Joyce Dan W, Kehagia Angie A, Tracy Derek K, Proctor Jessica, Shergill Sukhwinder S
Cognition Schizophrenia and Imaging Laboratory, Department of Psychosis Studies, PO63, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (PO89), King's College London, De Crespigny Park, London, SE5 8AF, UK.
J Transl Med. 2017 Jan 18;15(1):15. doi: 10.1186/s12967-016-1116-1.
Stratified or personalised medicine targets treatments for groups of individuals with a disorder based on individual heterogeneity and shared factors that influence the likelihood of response. Psychiatry has traditionally defined diagnoses by constellations of co-occurring signs and symptoms that are assigned a categorical label (e.g. schizophrenia). Trial methodology in psychiatry has evaluated interventions targeted at these categorical entities, with diagnoses being equated to disorders. Recent insights into both the nosology and neurobiology of psychiatric disorder reveal that traditional categorical diagnoses cannot be equated with disorders. We argue that current quantitative methodology (1) inherits these categorical assumptions, (2) allows only for the discovery of average treatment response, (3) relies on composite outcome measures and (4) sacrifices valuable predictive information for stratified and personalised treatment in psychiatry.
To achieve a truly 'stratified psychiatry' we propose and then operationalise two necessary steps: first, a formal multi-dimensional representation of disorder definition and clinical state, and second, the similar redefinition of outcomes as multidimensional constructs that can expose within- and between-patient differences in response. We use the categorical diagnosis of schizophrenia-conceptualised as a label for heterogeneous disorders-as a means of introducing operational definitions of stratified psychiatry using principles from multivariate analysis. We demonstrate this framework by application to the Clinical Antipsychotic Trials of Intervention Effectiveness dataset, showing heterogeneity in both patient clinical states and their trajectories after treatment that are lost in the traditional categorical approach with composite outcomes. We then systematically review a decade of registered clinical trials for cognitive deficits in schizophrenia highlighting existing assumptions of categorical diagnoses and aggregate outcomes while identifying a small number of trials that could be reanalysed using our proposal.
We describe quantitative methods for the development of a multi-dimensional model of clinical state, disorders and trajectories which practically realises stratified psychiatry. We highlight the potential for recovering existing trial data, the implications for stratified psychiatry in trial design and clinical treatment and finally, describe different kinds of probabilistic reasoning tools necessary to implement stratification.
分层医学或个性化医学针对患有某种疾病的个体群体进行治疗,其依据是个体异质性以及影响反应可能性的共同因素。传统上,精神病学通过同时出现的一系列体征和症状来定义诊断,并赋予一个分类标签(例如精神分裂症)。精神病学的试验方法评估了针对这些分类实体的干预措施,将诊断等同于疾病。最近对精神疾病的分类学和神经生物学的深入了解表明,传统的分类诊断不能等同于疾病。我们认为,当前的定量方法(1)继承了这些分类假设,(2)仅允许发现平均治疗反应,(3)依赖综合结局指标,并且(4)牺牲了用于精神病学分层和个性化治疗的有价值的预测信息。
为了实现真正的“分层精神病学”,我们提出并实施了两个必要步骤:第一,对疾病定义和临床状态进行正式的多维度表示;第二,将结局类似地重新定义为多维度结构,以揭示患者内部和患者之间反应的差异。我们将精神分裂症的分类诊断——概念化为异质性疾病的标签——作为一种手段,利用多变量分析的原理引入分层精神病学的操作定义。我们通过将其应用于干预有效性临床抗精神病药物试验数据集来展示这个框架,结果表明患者临床状态及其治疗后的轨迹存在异质性,而传统的分类方法采用综合结局时会忽略这些异质性。然后,我们系统回顾了十年间针对精神分裂症认知缺陷的注册临床试验,突出了分类诊断和总体结局的现有假设,同时确定了少数可以使用我们的提议进行重新分析的试验。
我们描述了用于开发临床状态、疾病和轨迹的多维度模型的定量方法,该方法切实实现了分层精神病学。我们强调了恢复现有试验数据的潜力、对试验设计和临床治疗中分层精神病学的影响,最后,描述了实施分层所需的不同类型的概率推理工具。