Kameneva Tatiana, Ying Tianlin, Guo Ben, Freestone Dean R
Department of Electrical and Electronic Engineering, The University of Melbourne, Melbourne, Australia.
Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.
J Comput Neurosci. 2017 Apr;42(2):203-215. doi: 10.1007/s10827-017-0636-x. Epub 2017 Jan 19.
Epilepsy is one of the most common neurological disorders and is characterized by recurrent seizures. We use theoretical neuroscience tools to study brain dynamics during seizures. We derive and simulate a computational model of a network of hippocampal neuronal populations. Each population within the network is based on a model that has been shown to replicate the electrophysiological dynamics observed during seizures. The results provide insights into possible mechanisms for seizure spread. We observe that epileptiform activity remains localized to a pathological region when a global connectivity parameter is less than a critical value. After establishing the critical value for seizure spread, we explored how to correct the effect by altering particular synaptic gains. The spreading of seizures is quantified using numerical methods for seizure detection. The results from this study provide a new avenue of exploration for seizure control.
癫痫是最常见的神经系统疾病之一,其特征是反复发作。我们使用理论神经科学工具来研究癫痫发作期间的脑动力学。我们推导并模拟了一个海马神经元群体网络的计算模型。网络中的每个群体都基于一个已被证明能复制癫痫发作期间观察到的电生理动力学的模型。这些结果为癫痫发作传播的可能机制提供了见解。我们观察到,当全局连接参数小于临界值时,癫痫样活动仍局限于病理区域。在确定癫痫发作传播的临界值后,我们探索了如何通过改变特定的突触增益来纠正这种影响。癫痫发作的传播通过癫痫检测的数值方法进行量化。这项研究的结果为癫痫控制提供了一条新的探索途径。