Kolb Brian, Luo Xuan, Zhou Xueyao, Jiang Bin, Guo Hua
Department of Chemistry and Chemical Biology, University of New Mexico , Albuquerque, New Mexico 87131, United States.
Department of Mechanical Engineering, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States.
J Phys Chem Lett. 2017 Feb 2;8(3):666-672. doi: 10.1021/acs.jpclett.6b02994. Epub 2017 Jan 23.
Ab initio molecular dynamics (AIMD) simulations of molecule-surface scattering allow first-principles characterization of the dynamics. However, the large number of density functional theory calculations along the trajectories is very costly, limiting simulations of long-time events and giving rise to poor statistics. To avoid this computational bottleneck, we report here the development of a high-dimensional molecule-surface interaction potential energy surface (PES) with movable surface atoms, using a machine learning approach. With 60 degrees of freedom, this PES allows energy transfer between the energetic impinging molecule and thermal surface atoms. Classical trajectory calculations for the scattering of DCl from Au(111) on this PES are found to agree well with AIMD simulations, with ∼10-fold acceleration. Scattering of HCl from Au(111) is further investigated and compared with available experimental results.
分子与表面散射的从头算分子动力学(AIMD)模拟能够对动力学进行第一性原理表征。然而,沿轨迹进行大量的密度泛函理论计算成本非常高,限制了对长时间事件的模拟,并导致统计数据不佳。为避免这一计算瓶颈,我们在此报告利用机器学习方法开发了一种具有可移动表面原子的高维分子 - 表面相互作用势能面(PES)。该势能面具有60个自由度,能够使高能入射分子与热表面原子之间进行能量转移。在此势能面上对DCl从Au(111)表面散射进行的经典轨迹计算结果与AIMD模拟结果吻合良好,加速了约10倍。进一步研究了HCl从Au(11)表面的散射,并与现有的实验结果进行了比较。