Suppr超能文献

YTHDF3促进N-甲基腺苷修饰的RNA的翻译和降解。

YTHDF3 facilitates translation and decay of N-methyladenosine-modified RNA.

作者信息

Shi Hailing, Wang Xiao, Lu Zhike, Zhao Boxuan S, Ma Honghui, Hsu Phillip J, Liu Chang, He Chuan

机构信息

Department of Chemistry and Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA.

Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.

出版信息

Cell Res. 2017 Mar;27(3):315-328. doi: 10.1038/cr.2017.15. Epub 2017 Jan 20.

Abstract

N-methyladenosine (mA) is the most abundant internal modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in cell differentiation and tissue development. It regulates multiple steps throughout the RNA life cycle including RNA processing, translation, and decay, via the recognition by selective binding proteins. In the cytoplasm, mA binding protein YTHDF1 facilitates translation of mA-modified mRNAs, and YTHDF2 accelerates the decay of mA-modified transcripts. The biological function of YTHDF3, another cytoplasmic mA binder of the YTH (YT521-B homology) domain family, remains unknown. Here, we report that YTHDF3 promotes protein synthesis in synergy with YTHDF1, and affects methylated mRNA decay mediated through YTHDF2. Cells deficient in all three YTHDF proteins experience the most dramatic accumulation of mA-modified transcripts. These results indicate that together with YTHDF1 and YTHDF2, YTHDF3 plays critical roles to accelerate metabolism of mA-modified mRNAs in the cytoplasm. All three YTHDF proteins may act in an integrated and cooperative manner to impact fundamental biological processes related to mA RNA methylation.

摘要

N6-甲基腺苷(m6A)是真核生物信使核糖核酸(mRNA)中最丰富的内部修饰,在细胞分化和组织发育中发挥重要作用。它通过选择性结合蛋白的识别,在RNA生命周期的多个步骤中发挥调节作用,包括RNA加工、翻译和降解。在细胞质中,m6A结合蛋白YTHDF1促进m6A修饰的mRNA的翻译,而YTHDF2加速m6A修饰的转录本的降解。YTHDF3是YTH(YT521-B同源)结构域家族的另一种细胞质m6A结合蛋白,其生物学功能尚不清楚。在此,我们报道YTHDF3与YTHDF1协同促进蛋白质合成,并影响通过YTHDF2介导的甲基化mRNA降解。缺乏所有三种YTHDF蛋白的细胞中,m6A修饰的转录本积累最为显著。这些结果表明,YTHDF3与YTHDF1和YTHDF2一起,在加速细胞质中m6A修饰的mRNA的代谢方面发挥关键作用。所有三种YTHDF蛋白可能以整合和协同的方式发挥作用,以影响与m6A RNA甲基化相关的基本生物学过程。

相似文献

1
YTHDF3 facilitates translation and decay of N-methyladenosine-modified RNA.
Cell Res. 2017 Mar;27(3):315-328. doi: 10.1038/cr.2017.15. Epub 2017 Jan 20.
2
A Unified Model for the Function of YTHDF Proteins in Regulating mA-Modified mRNA.
Cell. 2020 Jun 25;181(7):1582-1595.e18. doi: 10.1016/j.cell.2020.05.012. Epub 2020 Jun 2.
3
SUMOylation of the m6A reader YTHDF2 by PIAS1 promotes viral RNA decay to restrict EBV replication.
mBio. 2024 Feb 14;15(2):e0316823. doi: 10.1128/mbio.03168-23. Epub 2024 Jan 18.
4
N6-methyladenosine-dependent regulation of messenger RNA stability.
Nature. 2014 Jan 2;505(7481):117-20. doi: 10.1038/nature12730. Epub 2013 Nov 27.
5
N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency.
Cell. 2015 Jun 4;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
6
Ythdc2 is an N-methyladenosine binding protein that regulates mammalian spermatogenesis.
Cell Res. 2017 Sep;27(9):1115-1127. doi: 10.1038/cr.2017.99. Epub 2017 Aug 15.
7
N6-methyladenosine reader YTHDF family in biological processes: Structures, roles, and mechanisms.
Front Immunol. 2023 Mar 14;14:1162607. doi: 10.3389/fimmu.2023.1162607. eCollection 2023.
8
YTHDF2 Recognition of N-Methyladenosine (mA)-Modified RNA Is Associated with Transcript Destabilization.
ACS Chem Biol. 2020 Jan 17;15(1):132-139. doi: 10.1021/acschembio.9b00655. Epub 2019 Dec 12.
9
Ythdf mA Readers Function Redundantly during Zebrafish Development.
Cell Rep. 2020 Dec 29;33(13):108598. doi: 10.1016/j.celrep.2020.108598.
10
Recognition of RNA N-methyladenosine by IGF2BP proteins enhances mRNA stability and translation.
Nat Cell Biol. 2018 Mar;20(3):285-295. doi: 10.1038/s41556-018-0045-z. Epub 2018 Feb 23.

引用本文的文献

2
IDH1-dependent m6A methylation defines transcriptomic heterogeneity in glioma.
medRxiv. 2025 Aug 19:2024.09.24.24314089. doi: 10.1101/2024.09.24.24314089.
5
CircZFR/YTHDF3 axis drives lymph node metastasis in cervical cancer via FASN translation.
Mol Cancer. 2025 Aug 21;24(1):218. doi: 10.1186/s12943-025-02424-5.
6
Structures and mechanisms of U6 snRNA mA modification by METTL16.
Nat Commun. 2025 Aug 21;16(1):7708. doi: 10.1038/s41467-025-63021-0.
7
Small-molecule and peptide inhibitors of m6A regulators.
Front Oncol. 2025 Aug 1;15:1629864. doi: 10.3389/fonc.2025.1629864. eCollection 2025.
9
The Tiny Epigenetic Addition Plays Big Roles: The RNA Methylation in Both Human and Animal Herpesvirus Infection.
Transbound Emerg Dis. 2025 Jul 31;2025:8542827. doi: 10.1155/tbed/8542827. eCollection 2025.
10
RNA mA modification: a key regulator in normal and malignant processes.
Cell Investig. 2025 Jun;1(2). doi: 10.1016/j.clnves.2025.100023. Epub 2025 Jun 6.

本文引用的文献

2
Posttranscriptional m(6)A Editing of HIV-1 mRNAs Enhances Viral Gene Expression.
Cell Host Microbe. 2016 May 11;19(5):675-85. doi: 10.1016/j.chom.2016.04.002. Epub 2016 Apr 21.
3
Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing.
Mol Cell. 2016 Feb 18;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub 2016 Feb 11.
4
Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming.
Cell Stem Cell. 2015 Dec 3;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub 2015 Oct 29.
5
Dynamic m(6)A mRNA methylation directs translational control of heat shock response.
Nature. 2015 Oct 22;526(7574):591-4. doi: 10.1038/nature15377. Epub 2015 Oct 12.
6
HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events.
Cell. 2015 Sep 10;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub 2015 Aug 27.
7
8
N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency.
Cell. 2015 Jun 4;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
9
N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions.
Nature. 2015 Feb 26;518(7540):560-4. doi: 10.1038/nature14234.
10
Stem cells. m6A mRNA methylation facilitates resolution of naïve pluripotency toward differentiation.
Science. 2015 Feb 27;347(6225):1002-6. doi: 10.1126/science.1261417. Epub 2015 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验