Zhang Yan-Jun, Ding Jing-Na, Zhong Hui, Sun Chang-Ping, Han Ju-Guang
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, People's Republic of China.
Department of Physics, Linyi University, Shandong, 276000, People's Republic of China.
J Biol Phys. 2017 Mar;43(1):149-165. doi: 10.1007/s10867-016-9440-5. Epub 2017 Jan 21.
VP35 of Ebola viruses (EBOVs) is an attractive potential target because of its multifunction. All-atom molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born surface area (MM/GBSA) energy calculations are performed to investigate the single-walled carbon nanotube (SWCNT) as an inhibitor in wild-type (WT) VP35 as well as in three primary mutants (K248A, I295A, and K248A/I295A) through docking the SWCNT in the first basic patch (FBP) of VP35. The SWCNTs of all the four systems effectively bind to the FBP. Interestingly, the sites and orientations of the SWCNT binding to the I295A mutant and K248A/I295A double mutants change significantly to accommodate the variation of the VP35 conformation. Moreover, the VDW can provide the major forces for affinity binding in all four systems.
由于埃博拉病毒(EBOV)的VP35具有多种功能,它是一个有吸引力的潜在靶点。通过将单壁碳纳米管(SWCNT)对接至VP35的第一个碱性区域(FBP),进行了全原子分子动力学(MD)模拟和分子力学广义玻恩表面积(MM/GBSA)能量计算,以研究SWCNT作为野生型(WT)VP35以及三个主要突变体(K248A、I295A和K248A/I295A)抑制剂的情况。所有四个系统的SWCNT均能有效结合至FBP。有趣的是,SWCNT与I295A突变体和K248A/I295A双突变体结合的位点和方向发生了显著变化,以适应VP35构象的变化。此外,范德华力可为所有四个系统中的亲和结合提供主要作用力。