BioEmergences Laboratory (USR3695), CNRS, Université Paris-Saclay, Gif-sur-Yvette 91198, France.
Complex Systems Institute Paris Ile-de-France (ISC-PIF, UPS3611), CNRS, Paris 75013, France.
Nat Commun. 2017 Jan 23;8:13929. doi: 10.1038/ncomms13929.
The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal 'cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.
细胞生物力学,研究物理力如何塑造胚胎;以及遗传调控和分子信号转导,研究细胞如何确定其状态和行为。将这两个方面整合到一个统一的框架中对于全面理解形态发生的自组织动力学至关重要。在这里,我们介绍了 MecaGen,这是一个集成建模平台,通过机械变量和化学变量的耦合,能够对这两个过程进行假设驱动的模拟。我们的方法依赖于一个最小的“细胞行为本体论”,包括间充质细胞和上皮细胞及其相关行为。MecaGen 通过一个具有生物学相关性的基因调控网络和参数空间探索,使在 3D 空间中指定和控制复杂的集体运动成为可能。三个案例研究调查了斑马鱼早期胚胎发生中的模式形成、上皮分化和组织构造,其中后者与活体成像数据进行了定量比较,证明了我们框架的有效性和实用性。