Mantilla Brian S, Marchese Letícia, Casas-Sánchez Aitor, Dyer Naomi A, Ejeh Nicholas, Biran Marc, Bringaud Frédéric, Lehane Michael J, Acosta-Serrano Alvaro, Silber Ariel M
Laboratory of Biochemistry of Tryps - LaBTryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.
PLoS Pathog. 2017 Jan 23;13(1):e1006158. doi: 10.1371/journal.ppat.1006158. eCollection 2017 Jan.
Adaptation to different nutritional environments is essential for life cycle completion by all Trypanosoma brucei sub-species. In the tsetse fly vector, L-proline is among the most abundant amino acids and is mainly used by the fly for lactation and to fuel flight muscle. The procyclic (insect) stage of T. b. brucei uses L-proline as its main carbon source, relying on an efficient catabolic pathway to convert it to glutamate, and then to succinate, acetate and alanine as the main secreted end products. Here we investigated the essentiality of an undisrupted proline catabolic pathway in T. b. brucei by studying mitochondrial Δ1-pyrroline-5-carboxylate dehydrogenase (TbP5CDH), which catalyzes the irreversible conversion of gamma-glutamate semialdehyde (γGS) into L-glutamate and NADH. In addition, we provided evidence for the absence of a functional proline biosynthetic pathway. TbP5CDH expression is developmentally regulated in the insect stages of the parasite, but absent in bloodstream forms grown in vitro. RNAi down-regulation of TbP5CDH severely affected the growth of procyclic trypanosomes in vitro in the absence of glucose, and altered the metabolic flux when proline was the sole carbon source. Furthermore, TbP5CDH knocked-down cells exhibited alterations in the mitochondrial inner membrane potential (ΔΨm), respiratory control ratio and ATP production. Also, changes in the proline-glutamate oxidative capacity slightly affected the surface expression of the major surface glycoprotein EP-procyclin. In the tsetse, TbP5CDH knocked-down cells were impaired and thus unable to colonize the fly's midgut, probably due to the lack of glucose between bloodmeals. Altogether, our data show that the regulated expression of the proline metabolism pathway in T. b. brucei allows this parasite to adapt to the nutritional environment of the tsetse midgut.
适应不同的营养环境对于所有布氏锥虫亚种完成生命周期至关重要。在采采蝇媒介中,L-脯氨酸是最丰富的氨基酸之一,主要被采采蝇用于泌乳和为飞行肌肉提供能量。布氏锥虫的前循环(昆虫)阶段以L-脯氨酸作为主要碳源,依靠高效的分解代谢途径将其转化为谷氨酸,然后再转化为琥珀酸、乙酸和丙氨酸作为主要的分泌终产物。在此,我们通过研究线粒体Δ1-吡咯啉-5-羧酸脱氢酶(TbP5CDH)来探究布氏锥虫中完整脯氨酸分解代谢途径的必要性,该酶催化γ-谷氨酸半醛(γGS)不可逆地转化为L-谷氨酸和NADH。此外,我们提供了证据表明不存在功能性的脯氨酸生物合成途径。TbP5CDH的表达在寄生虫的昆虫阶段受到发育调控,但在体外培养的血液形式中不存在。在缺乏葡萄糖的情况下,RNA干扰下调TbP5CDH严重影响了前循环锥虫在体外的生长,并在脯氨酸作为唯一碳源时改变了代谢通量。此外,TbP5CDH敲低的细胞在线粒体内膜电位(ΔΨm)、呼吸控制率和ATP产生方面表现出改变。同样,脯氨酸-谷氨酸氧化能力的变化对主要表面糖蛋白EP-前环素的表面表达也有轻微影响。在采采蝇中,TbP5CDH敲低的细胞受损,因此无法在采采蝇中肠定殖,这可能是由于两次吸血之间缺乏葡萄糖所致。总之,我们的数据表明布氏锥虫中脯氨酸代谢途径的调控表达使这种寄生虫能够适应采采蝇中肠的营养环境。