Wang K W, Deng C, Li J P, Zhang Y Y, Li X Y, Wu M C
Wuxi Medical School,Jiangnan University,Wuxi,Jiangsu,People's Republic of China.
Epidemiol Infect. 2017 Apr;145(6):1118-1129. doi: 10.1017/S0950268816003216. Epub 2017 Jan 24.
Tuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.
结核病在全球范围内影响着人们,在中国它正被重新视为一个严重的公共卫生问题。可靠的预测对于结核病的预防和控制很有用。本研究提出了一种将自回归积分移动平均(ARIMA)与非线性自回归(NAR)神经网络相结合的混合模型,用于预测2007年1月至2016年3月期间的结核病发病率。比较了混合模型和ARIMA模型的预测性能。最佳拟合混合模型由ARIMA(3,1,0)×(0,1,1)12和具有四个延迟且隐藏层有12个神经元的NAR神经网络组成。在建模性能方面,ARIMA-NAR混合模型的均方误差、平均绝对误差和平均绝对百分比误差分别较低,为0·2209、0·1373和0·0406,与ARIMA模型相比,它能对结核病发病率做出更准确的预测。本研究表明,开发和应用ARIMA-NAR混合模型是拟合时间序列数据线性和非线性模式的有效方法,该模型可能有助于结核病的预防和控制。