Yin Bocheng, Barrionuevo Germán, Batinic-Haberle Ines, Sandberg Mats, Weber Stephen G
1 Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania.
2 Department of Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania.
Antioxid Redox Signal. 2017 Sep 20;27(9):534-549. doi: 10.1089/ars.2016.6706. Epub 2017 Mar 7.
The susceptibility of CA1 over CA3 to damage from cerebral ischemia may be related to the differences in reactive oxygen species (ROS) production/removal between the two hippocampal subfields. We aimed to measure CA1/CA3 differences in net ROS production in real time in the first 30 min of reperfusion in pyramidal cells. We aimed to determine the underlying cause of the differential vulnerability of CA1 and CA3.
Real-time determinations of mitochondrial HO and, independently, glutathione (GSH) redox status from roGFP-based probes in individual pyramidal cells in organotypic hippocampal cultures during oxygen-glucose deprivation (OGD)-reperfusion (RP) demonstrate a significantly more oxidizing environment during RP in CA1 than CA3 mitochondria. Protein levels (immunohistochemistry and Western blots), roGFP2-based probe measurements during controlled mitochondrial production of ROS, and thioredoxin reductase (TrxR) inhibition by auranofin are consistent with a more effective mitochondrial thioredoxin (Trx) system in CA3. Inhibition of TrxR eliminates the differences in redox status and cell death between the regions. Overexpression of cytosolic Trx1 does not influence mitochondrial HO production.
Real-time changes of mitochondrial HO and GSH in tissue cultures during early RP, and also during controlled production of superoxide and peroxide, reveal significant differences between CA1 and CA3. The mitochondrial Trx system is responsible for the observed differences during RP as well as for delayed cell death 18 h afterward.
Greater mitochondrial Trx efficacy in CA3 pyramidal cells results in less vulnerability to ischemia/reperfusion because of the less oxidizing environment in CA3 mitochondria during RP. Antioxid. Redox Signal. 27, 534-549.
与CA3相比,CA1对脑缺血损伤的易感性可能与两个海马亚区活性氧(ROS)产生/清除的差异有关。我们旨在实时测量再灌注最初30分钟内锥体细胞中CA1/CA3净ROS产生的差异。我们旨在确定CA1和CA3易损性差异的潜在原因。
在氧糖剥夺(OGD)-再灌注(RP)期间,通过基于roGFP的探针实时测定器官型海马培养物中单个锥体细胞的线粒体HO以及独立的谷胱甘肽(GSH)氧化还原状态,结果表明,与CA3线粒体相比,RP期间CA1中的氧化环境明显更强。蛋白质水平(免疫组织化学和蛋白质印迹)、在受控的线粒体ROS产生过程中基于roGFP2的探针测量以及金诺芬对硫氧还蛋白还原酶(TrxR)的抑制作用均与CA3中更有效的线粒体硫氧还蛋白(Trx)系统一致。抑制TrxR可消除区域间氧化还原状态和细胞死亡的差异。胞质Trx1的过表达不影响线粒体HO的产生。
在早期RP期间以及在超氧化物和过氧化物的受控产生过程中,组织培养物中线粒体HO和GSH的实时变化揭示了CA1和CA3之间的显著差异。线粒体Trx系统负责RP期间观察到的差异以及随后18小时的延迟细胞死亡。
CA3锥体细胞中线粒体Trx的功效更强,由于RP期间CA3线粒体中的氧化环境较弱,因此对缺血/再灌注的易损性较小。《抗氧化与氧化还原信号》第27卷,第534 - 549页