Suppr超能文献

具有应用于静息态 fMRI 数据的双层图形建模的随机协方差模型。

A random covariance model for bi-level graphical modeling with application to resting-state fMRI data.

机构信息

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.

Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota.

出版信息

Biometrics. 2021 Dec;77(4):1385-1396. doi: 10.1111/biom.13364. Epub 2020 Sep 11.

Abstract

We consider a novel problem, bi-level graphical modeling, in which multiple individual graphical models can be considered as variants of a common group-level graphical model and inference of both the group- and individual-level graphical models is of interest. Such a problem arises from many applications, including multi-subject neuro-imaging and genomics data analysis. We propose a novel and efficient statistical method, the random covariance model, to learn the group- and individual-level graphical models simultaneously. The proposed method can be nicely interpreted as a random covariance model that mimics the random effects model for mean structures in linear regression. It accounts for similarity between individual graphical models, identifies group-level connections that are shared by individuals, and simultaneously infers multiple individual-level networks. Compared to existing multiple graphical modeling methods that only focus on individual-level graphical modeling, our model learns the group-level structure underlying the multiple individual graphical models and enjoys computational efficiency that is particularly attractive for practical use. We further define a measure of degrees-of-freedom for the complexity of the model useful for model selection. We demonstrate the asymptotic properties of our method and show its finite-sample performance through simulation studies. Finally, we apply the method to our motivating clinical data, a multi-subject resting-state functional magnetic resonance imaging dataset collected from participants diagnosed with schizophrenia, identifying both individual- and group-level graphical models of functional connectivity.

摘要

我们考虑了一个新的问题,即双层图形建模,其中多个个体图形模型可以被视为一个常见的组级图形模型的变体,并且同时对组级和个体级图形模型进行推断是很有意义的。这种问题出现在许多应用中,包括多主体神经影像学和基因组数据分析。我们提出了一种新颖而有效的统计方法,即随机协方差模型,以同时学习组级和个体级图形模型。所提出的方法可以很好地解释为一种随机协方差模型,它模仿了线性回归中均值结构的随机效应模型。它考虑了个体图形模型之间的相似性,识别出个体之间共享的组级连接,并同时推断出多个个体级网络。与仅关注个体级图形建模的现有多种图形建模方法相比,我们的模型学习了多个个体图形模型背后的组级结构,并具有计算效率,这对于实际应用特别有吸引力。我们进一步定义了模型复杂度的自由度度量,该度量对于模型选择很有用。我们通过模拟研究证明了我们方法的渐近性质,并展示了其在有限样本下的性能。最后,我们将该方法应用于我们的临床数据,即从诊断为精神分裂症的参与者中收集的多主体静息态功能磁共振成像数据集,确定了功能连通性的个体级和组级图形模型。

相似文献

1
A random covariance model for bi-level graphical modeling with application to resting-state fMRI data.
Biometrics. 2021 Dec;77(4):1385-1396. doi: 10.1111/biom.13364. Epub 2020 Sep 11.
2
Scalable Bayesian matrix normal graphical models for brain functional networks.
Biometrics. 2021 Jun;77(2):439-450. doi: 10.1111/biom.13319. Epub 2020 Jul 10.
3
Predicting individual brain functional connectivity using a Bayesian hierarchical model.
Neuroimage. 2017 Feb 15;147:772-787. doi: 10.1016/j.neuroimage.2016.11.048. Epub 2016 Dec 1.
4
NBS-Predict: A prediction-based extension of the network-based statistic.
Neuroimage. 2021 Dec 1;244:118625. doi: 10.1016/j.neuroimage.2021.118625. Epub 2021 Oct 2.
5
Multi-subject Stochastic Blockmodels for adaptive analysis of individual differences in human brain network cluster structure.
Neuroimage. 2020 Oct 15;220:116611. doi: 10.1016/j.neuroimage.2020.116611. Epub 2020 Feb 10.
6
Sparse Graphical Models for Functional Connectivity Networks: Best Methods and the Autocorrelation Issue.
Brain Connect. 2018 Apr;8(3):139-165. doi: 10.1089/brain.2017.0511. Epub 2018 Mar 13.
7
Bayesian modeling of dependence in brain connectivity data.
Biostatistics. 2020 Apr 1;21(2):269-286. doi: 10.1093/biostatistics/kxy046.
8
Penalized model-based clustering of fMRI data.
Biostatistics. 2022 Jul 18;23(3):825-843. doi: 10.1093/biostatistics/kxaa061.
10
Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
Comput Methods Programs Biomed. 2019 Oct;179:104976. doi: 10.1016/j.cmpb.2019.07.004. Epub 2019 Jul 19.

引用本文的文献

1
Penalized model-based clustering of fMRI data.
Biostatistics. 2022 Jul 18;23(3):825-843. doi: 10.1093/biostatistics/kxaa061.

本文引用的文献

1
Bayesian Joint Modeling of Multiple Brain Functional Networks.
J Am Stat Assoc. 2021;116(534):518-530. doi: 10.1080/01621459.2020.1796357. Epub 2020 Sep 1.
2
Heterogeneous reciprocal graphical models.
Biometrics. 2018 Jun;74(2):606-615. doi: 10.1111/biom.12791. Epub 2017 Oct 10.
3
Joint Estimation of Multiple High-dimensional Precision Matrices.
Stat Sin. 2016 Apr;26(2):445-464. doi: 10.5705/ss.2014.256.
4
A variance components model for statistical inference on functional connectivity networks.
Neuroimage. 2017 Apr 1;149:256-266. doi: 10.1016/j.neuroimage.2017.01.051. Epub 2017 Jan 24.
5
On joint estimation of Gaussian graphical models for spatial and temporal data.
Biometrics. 2017 Sep;73(3):769-779. doi: 10.1111/biom.12650. Epub 2017 Jan 18.
6
Joint Estimation of Multiple Graphical Models from High Dimensional Time Series.
J R Stat Soc Series B Stat Methodol. 2016 Mar 1;78(2):487-504. doi: 10.1111/rssb.12123. Epub 2015 Jul 6.
8
Bayesian Inference of Multiple Gaussian Graphical Models.
J Am Stat Assoc. 2015 Mar 1;110(509):159-174. doi: 10.1080/01621459.2014.896806.
9
Detecting differential patterns of interaction in molecular pathways.
Biostatistics. 2015 Apr;16(2):240-51. doi: 10.1093/biostatistics/kxu054. Epub 2014 Dec 16.
10
Node-Based Learning of Multiple Gaussian Graphical Models.
J Mach Learn Res. 2014 Jan 1;15(1):445-488.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验