Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota.
Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota.
Biometrics. 2021 Dec;77(4):1385-1396. doi: 10.1111/biom.13364. Epub 2020 Sep 11.
We consider a novel problem, bi-level graphical modeling, in which multiple individual graphical models can be considered as variants of a common group-level graphical model and inference of both the group- and individual-level graphical models is of interest. Such a problem arises from many applications, including multi-subject neuro-imaging and genomics data analysis. We propose a novel and efficient statistical method, the random covariance model, to learn the group- and individual-level graphical models simultaneously. The proposed method can be nicely interpreted as a random covariance model that mimics the random effects model for mean structures in linear regression. It accounts for similarity between individual graphical models, identifies group-level connections that are shared by individuals, and simultaneously infers multiple individual-level networks. Compared to existing multiple graphical modeling methods that only focus on individual-level graphical modeling, our model learns the group-level structure underlying the multiple individual graphical models and enjoys computational efficiency that is particularly attractive for practical use. We further define a measure of degrees-of-freedom for the complexity of the model useful for model selection. We demonstrate the asymptotic properties of our method and show its finite-sample performance through simulation studies. Finally, we apply the method to our motivating clinical data, a multi-subject resting-state functional magnetic resonance imaging dataset collected from participants diagnosed with schizophrenia, identifying both individual- and group-level graphical models of functional connectivity.
我们考虑了一个新的问题,即双层图形建模,其中多个个体图形模型可以被视为一个常见的组级图形模型的变体,并且同时对组级和个体级图形模型进行推断是很有意义的。这种问题出现在许多应用中,包括多主体神经影像学和基因组数据分析。我们提出了一种新颖而有效的统计方法,即随机协方差模型,以同时学习组级和个体级图形模型。所提出的方法可以很好地解释为一种随机协方差模型,它模仿了线性回归中均值结构的随机效应模型。它考虑了个体图形模型之间的相似性,识别出个体之间共享的组级连接,并同时推断出多个个体级网络。与仅关注个体级图形建模的现有多种图形建模方法相比,我们的模型学习了多个个体图形模型背后的组级结构,并具有计算效率,这对于实际应用特别有吸引力。我们进一步定义了模型复杂度的自由度度量,该度量对于模型选择很有用。我们通过模拟研究证明了我们方法的渐近性质,并展示了其在有限样本下的性能。最后,我们将该方法应用于我们的临床数据,即从诊断为精神分裂症的参与者中收集的多主体静息态功能磁共振成像数据集,确定了功能连通性的个体级和组级图形模型。