Peng Shih-Wen, Li Ching-Wen, Chiu Ing-Ming, Wang Gou-Jen
Graduate Institute of Biomedical Engineering.
Department of Mechanical Engineering.
Int J Nanomedicine. 2017 Jan 11;12:421-432. doi: 10.2147/IJN.S122017. eCollection 2017.
Nerve repair in tissue engineering involves the precise construction of a scaffold to guide nerve cell regeneration in the desired direction. However, improvements are needed to facilitate the cell migration/growth rate of nerves in the center of a nerve conduit. In this paper, we propose a nerve guidance conduit with a hybrid structure comprising a microfibrous poly(lactic--glycolic acid) (PLGA) bundle wrapped in a micro/nanostructured PLGA membrane. We applied sequential fabrication processes, including photolithography, nano-electroforming, and polydimethylsiloxane casting to manufacture master molds for the repeated production of the PLGA subelements. After demolding it from the master molds, we rolled the microfibrous membrane into a bundle and then wrapped it in the micro/nanostructured membrane to form a nerve-guiding conduit. We used KT98/F1B-GFP cells to estimate the migration rate and guidance ability of the fabricated nerve conduit and found that both elements increased the migration rate 1.6-fold compared with a flat PLGA membrane. We also found that 90% of the cells in the hybrid nano/microstructured membrane grew in the direction of the designed patterns. After 3 days of culturing, the interior of the nerve conduit was filled with cells, and the microfiber bundle was also surrounded by cells. Our conduit cell culture results also demonstrate that the proposed micro/nanohybrid and microfibrous structures can retain their shapes. The proposed hybrid-structured conduit demonstrates a high capability for guiding nerve cells and promoting cell migration, and, as such, is feasible for use in clinical applications.
组织工程中的神经修复涉及精确构建支架,以引导神经细胞沿期望方向再生。然而,仍需要改进以促进神经在神经导管中心的细胞迁移/生长速率。在本文中,我们提出了一种具有混合结构的神经引导导管,其由包裹在微/纳米结构聚乳酸-乙醇酸共聚物(PLGA)膜中的微纤维PLGA束组成。我们应用了包括光刻、纳米电铸和聚二甲基硅氧烷浇铸在内的顺序制造工艺来制造用于重复生产PLGA子元件的母模。从母模脱模后,我们将微纤维膜卷成束,然后用微/纳米结构膜包裹以形成神经引导导管。我们使用KT98/F1B-GFP细胞来评估所制造的神经导管的迁移速率和引导能力,发现与平坦的PLGA膜相比,这两个元件均使迁移速率提高了1.6倍。我们还发现,混合纳米/微结构膜中90%的细胞沿设计图案的方向生长。培养3天后,神经导管内部充满细胞,微纤维束也被细胞包围。我们的导管细胞培养结果还表明,所提出的微/纳米混合和微纤维结构能够保持其形状。所提出的混合结构导管显示出高神经细胞引导能力和促进细胞迁移的能力,因此在临床应用中是可行的。