Suppr超能文献

脉冲极性对人工耳蜗使用者阈值及非单调响度增长的影响。

Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users.

作者信息

Macherey Olivier, Carlyon Robert P, Chatron Jacques, Roman Stéphane

机构信息

Aix Marseille Université, CNRS, Centrale Marseille, LMA, 4 Impasse Nikola Tesla CS 40006, F-13453, Marseille Cedex 13, France.

MRC Cognition and Brain Sciences Unit, 31 Chaucer Road, Cambridge, CB2 7EF, UK.

出版信息

J Assoc Res Otolaryngol. 2017 Jun;18(3):513-527. doi: 10.1007/s10162-016-0614-4. Epub 2017 Jan 30.

Abstract

Most cochlear implants (CIs) activate their electrodes non-simultaneously in order to eliminate electrical field interactions. However, the membrane of auditory nerve fibers needs time to return to its resting state, causing the probability of firing to a pulse to be affected by previous pulses. Here, we provide new evidence on the effect of pulse polarity and current level on these interactions. In experiment 1, detection thresholds and most comfortable levels (MCLs) were measured in CI users for 100-Hz pulse trains consisting of two consecutive biphasic pulses of the same or of opposite polarity. All combinations of polarities were studied: anodic-cathodic-anodic-cathodic (ACAC), CACA, ACCA, and CAAC. Thresholds were lower when the adjacent phases of the two pulses had the same polarity (ACCA and CAAC) than when they were different (ACAC and CACA). Some subjects showed a lower threshold for ACCA than for CAAC while others showed the opposite trend demonstrating that polarity sensitivity at threshold is genuine and subject- or electrode-dependent. In contrast, anodic (CAAC) pulses always showed a lower MCL than cathodic (ACCA) pulses, confirming previous reports. In experiments 2 and 3, the subjects compared the loudness of several pulse trains differing in current level separately for ACCA and CAAC. For 40 % of the electrodes tested, loudness grew non-monotonically as a function of current level for ACCA but never for CAAC. This finding may relate to a conduction block of the action potentials along the fibers induced by a strong hyperpolarization of their central processes. Further analysis showed that the electrodes showing a lower threshold for ACCA than for CAAC were more likely to yield a non-monotonic loudness growth. It is proposed that polarity sensitivity at threshold reflects the local neural health and that anodic asymmetric pulses should preferably be used to convey sound information while avoiding abnormal loudness percepts.

摘要

大多数人工耳蜗(CI)会非同步激活其电极,以消除电场相互作用。然而,听神经纤维的膜需要时间恢复到静息状态,这导致对脉冲放电的概率受到先前脉冲的影响。在此,我们提供了关于脉冲极性和电流水平对这些相互作用影响的新证据。在实验1中,对人工耳蜗使用者测量了由两个相同或相反极性的连续双相脉冲组成的100赫兹脉冲序列的检测阈值和最舒适响度水平(MCL)。研究了所有极性组合:阳极 - 阴极 - 阳极 - 阴极(ACAC)、CACA、ACCA和CAAC。当两个脉冲的相邻相位极性相同时(ACCA和CAAC),阈值低于极性不同时(ACAC和CACA)。一些受试者对ACCA的阈值低于CAAC,而另一些受试者则呈现相反趋势,这表明阈值处的极性敏感性是真实的,且因受试者或电极而异。相比之下,阳极(CAAC)脉冲的MCL始终低于阴极(ACCA)脉冲,证实了先前的报道。在实验2和3中,受试者分别比较了ACCA和CAAC中几个电流水平不同的脉冲序列的响度。对于40%的测试电极,ACCA的响度随电流水平呈非单调增长,而CAAC则从未出现这种情况。这一发现可能与动作电位沿纤维的传导阻滞有关,该阻滞由其中心突的强烈超极化引起。进一步分析表明,对ACCA的阈值低于CAAC的电极更有可能产生非单调的响度增长。研究表明,阈值处的极性敏感性反映了局部神经健康状况,阳极不对称脉冲应优先用于传递声音信息,同时避免异常的响度感知。

相似文献

1
Effect of Pulse Polarity on Thresholds and on Non-monotonic Loudness Growth in Cochlear Implant Users.
J Assoc Res Otolaryngol. 2017 Jun;18(3):513-527. doi: 10.1007/s10162-016-0614-4. Epub 2017 Jan 30.
2
Effect of Pulse Rate and Polarity on the Sensitivity of Auditory Brainstem and Cochlear Implant Users to Electrical Stimulation.
J Assoc Res Otolaryngol. 2015 Oct;16(5):653-68. doi: 10.1007/s10162-015-0530-z. Epub 2015 Jul 3.
3
Effects of pulse shape on pitch sensitivity of cochlear implant users.
Hear Res. 2024 Sep 1;450:109075. doi: 10.1016/j.heares.2024.109075. Epub 2024 Jul 3.
6
Comparisons between detection threshold and loudness perception for individual cochlear implant channels.
Ear Hear. 2014 Nov-Dec;35(6):641-51. doi: 10.1097/AUD.0000000000000058.
7
Effects of pulse rate on thresholds and loudness of biphasic and alternating monophasic pulse trains in electrical hearing.
Hear Res. 2006 Oct;220(1-2):49-60. doi: 10.1016/j.heares.2006.06.015. Epub 2006 Aug 10.
8
Effect of the Relative Timing between Same-Polarity Pulses on Thresholds and Loudness in Cochlear Implant Users.
J Assoc Res Otolaryngol. 2020 Dec;21(6):497-510. doi: 10.1007/s10162-020-00767-y. Epub 2020 Aug 24.
10
Asymmetric pulses in cochlear implants: effects of pulse shape, polarity, and rate.
J Assoc Res Otolaryngol. 2006 Sep;7(3):253-66. doi: 10.1007/s10162-006-0040-0. Epub 2006 May 20.

引用本文的文献

1
A Prospective, Multicentre Case-Control Trial Examining Factors That Explain Variable Clinical Performance in Post Lingual Adult CI Recipients.
Trends Hear. 2025 Jan-Dec;29:23312165251347138. doi: 10.1177/23312165251347138. Epub 2025 Jun 27.
2
Effects of stimulus polarity on the local evoked potential in auditory brainstem implant users.
Sci Rep. 2025 Feb 18;15(1):5832. doi: 10.1038/s41598-025-90114-z.
5
Exploring the Use of Interleaved Stimuli to Measure Cochlear-Implant Excitation Patterns.
J Assoc Res Otolaryngol. 2024 Apr;25(2):201-213. doi: 10.1007/s10162-024-00937-2. Epub 2024 Mar 8.
7
Cochlear Health and Cochlear-implant Function.
J Assoc Res Otolaryngol. 2023 Feb;24(1):5-29. doi: 10.1007/s10162-022-00882-y. Epub 2023 Jan 4.
8
Assessing the Relationship Between Pitch Perception and Neural Health in Cochlear Implant Users.
J Assoc Res Otolaryngol. 2022 Dec;23(6):875-887. doi: 10.1007/s10162-022-00876-w. Epub 2022 Nov 3.
9
Modulation Depth Discrimination by Cochlear Implant Users.
J Assoc Res Otolaryngol. 2022 Apr;23(2):285-299. doi: 10.1007/s10162-022-00834-6. Epub 2022 Jan 26.
10
Polarity Sensitivity of Human Auditory Nerve Fibers Based on Pulse Shape, Cochlear Implant Stimulation Strategy and Array.
Front Neurosci. 2021 Dec 8;15:751599. doi: 10.3389/fnins.2021.751599. eCollection 2021.

本文引用的文献

1
Rate discrimination, gap detection and ranking of temporal pitch in cochlear implant users.
J Assoc Res Otolaryngol. 2016 Aug;17(4):371-82. doi: 10.1007/s10162-016-0569-5. Epub 2016 Apr 21.
3
Temporal Considerations for Stimulating Spiral Ganglion Neurons with Cochlear Implants.
J Assoc Res Otolaryngol. 2016 Feb;17(1):1-17. doi: 10.1007/s10162-015-0545-5.
4
Re-examining the upper limit of temporal pitch.
J Acoust Soc Am. 2014 Dec;136(6):3186. doi: 10.1121/1.4900917.
7
Temporal interaction in electrical hearing elucidates auditory nerve dynamics in humans.
Hear Res. 2013 May;299:10-8. doi: 10.1016/j.heares.2013.01.015. Epub 2013 Feb 8.
8
Probing the electrode-neuron interface with focused cochlear implant stimulation.
Trends Amplif. 2010 Jun;14(2):84-95. doi: 10.1177/1084713810375249.
9
Higher sensitivity of human auditory nerve fibers to positive electrical currents.
J Assoc Res Otolaryngol. 2008 Jun;9(2):241-51. doi: 10.1007/s10162-008-0112-4. Epub 2008 Feb 21.
10
A dual-process integrator-resonator model of the electrically stimulated human auditory nerve.
J Assoc Res Otolaryngol. 2007 Mar;8(1):84-104. doi: 10.1007/s10162-006-0066-3. Epub 2007 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验