Suppr超能文献

对称分裂真核生物中与衰老无关的复制寿命。

An aging-independent replicative lifespan in a symmetrically dividing eukaryote.

作者信息

Spivey Eric C, Jones Stephen K, Rybarski James R, Saifuddin Fatema A, Finkelstein Ilya J

机构信息

Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States.

Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, United States.

出版信息

Elife. 2017 Jan 31;6:e20340. doi: 10.7554/eLife.20340.

Abstract

The replicative lifespan (RLS) of a cell-defined as the number of cell divisions before death-has informed our understanding of the mechanisms of cellular aging. However, little is known about aging and longevity in symmetrically dividing eukaryotic cells because most prior studies have used budding yeast for RLS studies. Here, we describe a multiplexed fission yeast lifespan micro-dissector (multFYLM) and an associated image processing pipeline for performing high-throughput and automated single-cell micro-dissection. Using the multFYLM, we observe continuous replication of hundreds of individual fission yeast cells for over seventy-five generations. Surprisingly, cells die without the classic hallmarks of cellular aging, such as progressive changes in size, doubling time, or sibling health. Genetic perturbations and drugs can extend the RLS via an aging-independent mechanism. Using a quantitative model to analyze these results, we conclude that fission yeast does not age and that cellular aging and replicative lifespan can be uncoupled in a eukaryotic cell.

摘要

细胞的复制寿命(RLS)定义为细胞死亡前的细胞分裂次数,它为我们理解细胞衰老机制提供了依据。然而,对于对称分裂的真核细胞中的衰老和长寿情况,我们了解甚少,因为大多数先前的研究都使用芽殖酵母进行RLS研究。在这里,我们描述了一种多重裂殖酵母寿命显微切割器(multFYLM)以及用于进行高通量和自动化单细胞显微切割的相关图像处理流程。使用multFYLM,我们观察到数百个单个裂殖酵母细胞连续复制超过七十五代。令人惊讶的是,细胞死亡时没有细胞衰老的典型特征,如大小、倍增时间或子代健康状况的渐进性变化。基因扰动和药物可以通过与衰老无关的机制延长RLS。通过使用定量模型分析这些结果,我们得出结论,裂殖酵母不会衰老,并且在真核细胞中细胞衰老和复制寿命可以解耦。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验