Suppr超能文献

p53与RAD9、DNA损伤反应及转录网络的调控

p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks.

作者信息

Lieberman Howard B, Panigrahi Sunil K, Hopkins Kevin M, Wang Li, Broustas Constantinos G

机构信息

a   Center for Radiological Research, Columbia University College of Physicians and Surgeons, New York, New York 10032; and.

b   Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032.

出版信息

Radiat Res. 2017 Apr;187(4):424-432. doi: 10.1667/RR003CC.1. Epub 2017 Jan 31.

Abstract

The way cells respond to DNA damage is important since inefficient repair or misrepair of lesions can have deleterious consequences, including mutation, genomic instability, neurodegenerative disorders, premature aging, cancer or death. Whether damage occurs spontaneously as a byproduct of normal metabolic processes, or after exposure to exogenous agents, cells muster a coordinated, complex DNA damage response (DDR) to mitigate potential harmful effects. A variety of activities are involved to promote cell survival, and include DNA repair, DNA damage tolerance, as well as transient cell cycle arrest to provide time for repair before entry into critical cell cycle phases, an event that could be lethal if traversal occurs while damage is present. When such damage is prolonged or not repairable, senescence, apoptosis or autophagy is induced. One major level of DDR regulation occurs via the orchestrated transcriptional control of select sets of genes encoding proteins that mediate the response. p53 is a transcription factor that transactivates specific DDR downstream genes through binding DNA consensus sequences usually in or near target gene promoter regions. The profile of p53-regulated genes activated at any given time varies, and is dependent upon type of DNA damage or stress experienced, exact composition of the consensus DNA binding sequence, presence of other DNA binding proteins, as well as cell context. RAD9 is another protein critical for the response of cells to DNA damage, and can also selectively regulate gene transcription. The limited studies addressing the role of RAD9 in transcription regulation indicate that the protein transactivates at least one of its target genes, p21/waf1/cip1, by binding to DNA sequences demonstrated to be a p53 response element. NEIL1 is also regulated by RAD9 through a similar DNA sequence, though not yet directly verified as a bonafide p53 response element. These findings suggest a novel pathway whereby p53 and RAD9 control the DDR through a shared mechanism involving an overlapping network of downstream target genes. Details and unresolved questions about how these proteins coordinate or compete to execute the DDR through transcriptional reprogramming, as well as biological implications, are discussed.

摘要

细胞对DNA损伤的反应方式至关重要,因为损伤修复效率低下或错误修复会产生有害后果,包括突变、基因组不稳定、神经退行性疾病、早衰、癌症或死亡。无论损伤是作为正常代谢过程的副产物自发发生,还是在接触外源性因素后发生,细胞都会启动协调、复杂的DNA损伤反应(DDR)以减轻潜在的有害影响。多种活动参与其中以促进细胞存活,包括DNA修复、DNA损伤耐受,以及短暂的细胞周期停滞,以便在进入关键细胞周期阶段之前提供修复时间,如果在损伤存在时进行细胞周期进程,可能会导致致命后果。当这种损伤持续存在或无法修复时,会诱导细胞衰老、凋亡或自噬。DDR调控的一个主要层面是通过对编码介导该反应的蛋白质的特定基因集进行精心的转录控制来实现的。p53是一种转录因子,它通过结合通常位于靶基因启动子区域内或附近的DNA共有序列来反式激活特定的DDR下游基因。在任何给定时间激活的p53调控基因谱各不相同,并且取决于所经历的DNA损伤或应激类型、共有DNA结合序列的确切组成、其他DNA结合蛋白的存在以及细胞背景。RAD9是另一种对细胞对DNA损伤的反应至关重要的蛋白质,它也可以选择性地调节基因转录。关于RAD9在转录调控中作用的有限研究表明,该蛋白通过结合被证明是p53反应元件的DNA序列来反式激活其至少一个靶基因p21/waf1/cip1。NEIL1也通过类似的DNA序列受RAD9调控,尽管尚未直接验证其为真正的p53反应元件。这些发现提示了一种新途径,即p53和RAD9通过涉及下游靶基因重叠网络的共享机制来控制DDR。本文讨论了这些蛋白质如何通过转录重编程协调或竞争以执行DDR的细节和未解决的问题,以及生物学意义。

相似文献

1
p53 and RAD9, the DNA Damage Response, and Regulation of Transcription Networks.
Radiat Res. 2017 Apr;187(4):424-432. doi: 10.1667/RR003CC.1. Epub 2017 Jan 31.
2
Functional interplay between p53 and E2F through co-activator p300.
Oncogene. 1998 May 28;16(21):2695-710. doi: 10.1038/sj.onc.1201818.
4
Human RAD9 checkpoint control/proapoptotic protein can activate transcription of p21.
Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8864-9. doi: 10.1073/pnas.0403130101. Epub 2004 Jun 7.
7
Cooperation between ARID3A and p53 in the transcriptional activation of p21WAF1 in response to DNA damage.
Biochem Biophys Res Commun. 2012 Jan 13;417(2):710-6. doi: 10.1016/j.bbrc.2011.12.003. Epub 2011 Dec 8.
8
Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage.
Nature. 2002 Oct 17;419(6908):729-34. doi: 10.1038/nature01119. Epub 2002 Oct 2.
9
DNA-damage induction of RAD54 can be regulated independently of the RAD9- and DDC1-dependent checkpoints that regulate RNR2.
Curr Genet. 2002 Jul;41(4):232-40. doi: 10.1007/s00294-002-0302-2. Epub 2002 Jun 27.
10
SW480, a p53 double-mutant cell line retains proficiency for some p53 functions.
J Mol Biol. 2005 Sep 9;352(1):44-57. doi: 10.1016/j.jmb.2005.06.033.

引用本文的文献

1
From cell cycle control to cancer therapy: exploring the role of CDK1 and CDK2 in tumorigenesis.
Med Oncol. 2025 Aug 9;42(9):422. doi: 10.1007/s12032-025-02973-1.
2
Research progress on the role of the NEIL family in cancer.
Front Cell Dev Biol. 2025 Jul 21;13:1612329. doi: 10.3389/fcell.2025.1612329. eCollection 2025.
3
Uterine fibroids show evidence of shared genetic architecture with blood pressure traits.
Pac Symp Biocomput. 2025;30:281-295. doi: 10.1142/9789819807024_0021.
4
Protein arginine methyltransferases as regulators of cellular stress.
Exp Neurol. 2025 Feb;384:115060. doi: 10.1016/j.expneurol.2024.115060. Epub 2024 Nov 17.
8
Loss of fragile WWOX gene leads to senescence escape and genome instability.
Cell Mol Life Sci. 2023 Oct 28;80(11):338. doi: 10.1007/s00018-023-04950-1.
9
Interactions between the DNA Damage Response and the Telomere Complex in Carcinogenesis: A Hypothesis.
Curr Issues Mol Biol. 2023 Sep 19;45(9):7582-7616. doi: 10.3390/cimb45090478.
10
The Role of Protein Arginine Methyltransferases in DNA Damage Response.
Int J Mol Sci. 2022 Aug 29;23(17):9780. doi: 10.3390/ijms23179780.

本文引用的文献

1
Transcription-coupled repair: an update.
Arch Toxicol. 2016 Nov;90(11):2583-2594. doi: 10.1007/s00204-016-1820-x. Epub 2016 Aug 22.
2
DNA Breaks and End Resection Measured Genome-wide by End Sequencing.
Mol Cell. 2016 Sep 1;63(5):898-911. doi: 10.1016/j.molcel.2016.06.034. Epub 2016 Jul 28.
3
To clear, or not to clear (senescent cells)? That is the question.
Bioessays. 2016 Jul;38 Suppl 1:S56-64. doi: 10.1002/bies.201670910.
4
The p53 Pathway: Origins, Inactivation in Cancer, and Emerging Therapeutic Approaches.
Annu Rev Biochem. 2016 Jun 2;85:375-404. doi: 10.1146/annurev-biochem-060815-014710. Epub 2016 May 4.
6
The RNA Response to DNA Damage.
J Mol Biol. 2016 Jun 19;428(12):2636-2651. doi: 10.1016/j.jmb.2016.03.004. Epub 2016 Mar 12.
7
The effect of non-coding DNA variations on P53 and cMYC competitive inhibition at cis-overlapping motifs.
Hum Mol Genet. 2016 Apr 15;25(8):1517-27. doi: 10.1093/hmg/ddw030. Epub 2016 Feb 7.
8
Risky business: Microhomology-mediated end joining.
Mutat Res. 2016 Jun;788:17-24. doi: 10.1016/j.mrfmmm.2015.12.005. Epub 2016 Jan 2.
9
An Overview of Carcinogenic Heavy Metal: Molecular Toxicity Mechanism and Prevention.
J Cancer Prev. 2015 Dec;20(4):232-40. doi: 10.15430/JCP.2015.20.4.232. Epub 2015 Dec 30.
10
Meiotic DSB patterning: A multifaceted process.
Cell Cycle. 2016;15(1):13-21. doi: 10.1080/15384101.2015.1093709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验