Suppr超能文献

用于改善搏动性动脉血流测量的带交错图像的超声成像测速法:一种新的校正方法、实验及体内验证

Ultrasound imaging velocimetry with interleaved images for improved pulsatile arterial flow measurements: a new correction method, experimental and in vivo validation.

作者信息

Fraser Katharine H, Poelma Christian, Zhou Bin, Bazigou Eleni, Tang Meng-Xing, Weinberg Peter D

机构信息

Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK

Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, The Netherlands.

出版信息

J R Soc Interface. 2017 Feb;14(127). doi: 10.1098/rsif.2016.0761.

Abstract

Blood velocity measurements are important in physiological science and clinical diagnosis. Doppler ultrasound is the most commonly used method but can only measure one velocity component. Ultrasound imaging velocimetry (UIV) is a promising technique capable of measuring two velocity components; however, there is a limit on the maximum velocity that can be measured with conventional hardware which results from the way images are acquired by sweeping the ultrasound beam across the field of view. Interleaved UIV is an extension of UIV in which two image frames are acquired concurrently, allowing the effective interframe separation time to be reduced and therefore increasing the maximum velocity that can be measured. The sweeping of the ultrasound beam across the image results in a systematic error which must be corrected: in this work, we derived and implemented a new velocity correction method which accounts for acceleration of the scatterers. We then, for the first time, assessed the performance of interleaved UIV for measuring pulsatile arterial velocities by measuring flows in phantoms and in vivo and comparing the results with spectral Doppler ultrasound and transit-time flow probe data. The velocity and flow rate in the phantom agreed within 5-10% of peak velocity, and 2-9% of peak flow, respectively, and in vivo the velocity difference was 9% of peak velocity. The maximum velocity measured was 1.8 m s, the highest velocity reported with UIV. This will allow flows in diseased arteries to be investigated and so has the potential to increase diagnostic accuracy and enable new vascular research.

摘要

血流速度测量在生理科学和临床诊断中具有重要意义。多普勒超声是最常用的方法,但只能测量一个速度分量。超声成像测速法(UIV)是一种很有前景的技术,能够测量两个速度分量;然而,使用传统硬件进行测量时,由于通过在视场中扫描超声束来获取图像的方式,可测量的最大速度存在限制。交错式UIV是UIV的一种扩展,其中两个图像帧同时获取,从而可以减少有效的帧间分离时间,进而提高可测量的最大速度。超声束在图像上的扫描会导致必须校正的系统误差:在这项工作中,我们推导并实现了一种考虑散射体加速度的新速度校正方法。然后,我们首次通过测量模型和体内的血流,并将结果与频谱多普勒超声和渡越时间血流探头数据进行比较,评估了交错式UIV测量脉动动脉速度的性能。模型中的速度和流速分别在峰值速度的5 - 10%和峰值流量的2 - 9%范围内一致,在体内速度差异为峰值速度的9%。测量到的最大速度为1.8 m/s,这是UIV报道的最高速度。这将有助于研究病变动脉中的血流,因此有可能提高诊断准确性并推动新的血管研究。

相似文献

2
3-D Velocity and Volume Flow Measurement In Vivo Using Speckle Decorrelation and 2-D High-Frame-Rate Contrast-Enhanced Ultrasound.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Dec;65(12):2233-2244. doi: 10.1109/TUFFC.2018.2850535. Epub 2018 Jun 27.
3
Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry.
Ultrasound Med Biol. 2018 Jul;44(7):1392-1401. doi: 10.1016/j.ultrasmedbio.2018.02.013. Epub 2018 Apr 17.
4
A dual-phantom system for validation of velocity measurements in stenosis models under steady flow.
Ultrasound Med Biol. 2009 Sep;35(9):1510-24. doi: 10.1016/j.ultrasmedbio.2009.03.019. Epub 2009 Jun 21.
6
Accuracy and reproducibility of a novel dual-beam vector Doppler method.
Ultrasound Med Biol. 2009 May;35(5):829-38. doi: 10.1016/j.ultrasmedbio.2008.10.012. Epub 2008 Dec 24.
7
Implementation of spectral width Doppler in pulsatile flow measurements.
Ultrasound Med Biol. 1999 Oct;25(8):1221-7. doi: 10.1016/s0301-5629(99)00083-6.
8
Optimization of 3-D Divergence-Free Flow Field Reconstruction Using 2-D Ultrasound Vector Flow Imaging.
Ultrasound Med Biol. 2019 Nov;45(11):3042-3055. doi: 10.1016/j.ultrasmedbio.2019.06.402. Epub 2019 Aug 2.
10
Ultrasound imaging velocimetry: effect of beam sweeping on velocity estimation.
Ultrasound Med Biol. 2013 Sep;39(9):1672-81. doi: 10.1016/j.ultrasmedbio.2013.03.003. Epub 2013 Jun 19.

引用本文的文献

1
Hemodynamics in Doppler ultrasonography.
Ultrasonography. 2024 Nov;43(6):413-423. doi: 10.14366/usg.24126. Epub 2024 Sep 19.
2
Imperatives of Mathematical Model of Arterial Blood Dynamics for Interpretation of Doppler Velocimetry: A Narrative Review.
J Med Ultrasound. 2023 Jun 23;31(3):188-194. doi: 10.4103/jmu.jmu_8_23. eCollection 2023 Jul-Sep.
3
Use of Photoacoustic Imaging to Study the Effects of Anemia on Placental Oxygen Saturation in Normoxic and Hypoxic Conditions.
Reprod Sci. 2024 Apr;31(4):966-974. doi: 10.1007/s43032-023-01395-6. Epub 2023 Nov 27.
5
The association of peak systolic velocity in the carotid artery with coronary heart disease: A study based on portable ultrasound.
Proc Inst Mech Eng H. 2021 Jun;235(6):663-675. doi: 10.1177/09544119211000482. Epub 2021 Mar 12.
6
Measurement in opaque flows: a review of measurement techniques for dispersed multiphase flows.
Acta Mech. 2020;231(6):2089-2111. doi: 10.1007/s00707-020-02683-x. Epub 2020 May 13.
7
Ventricular Flow Field Visualization During Mechanical Circulatory Support in the Assisted Isolated Beating Heart.
Ann Biomed Eng. 2020 Feb;48(2):794-804. doi: 10.1007/s10439-019-02406-x. Epub 2019 Nov 18.
8
Longitudinal characterization of local perfusion of the rat placenta using contrast-enhanced ultrasound imaging.
Interface Focus. 2019 Oct 6;9(5):20190024. doi: 10.1098/rsfs.2019.0024. Epub 2019 Aug 16.
9
Measurement of Wall Shear Stress Exerted by Flowing Blood in the Human Carotid Artery: Ultrasound Doppler Velocimetry and Echo Particle Image Velocimetry.
Ultrasound Med Biol. 2018 Jul;44(7):1392-1401. doi: 10.1016/j.ultrasmedbio.2018.02.013. Epub 2018 Apr 17.

本文引用的文献

1
Ultrasound Vector Flow Imaging-Part II: Parallel Systems.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Nov;63(11):1722-1732. doi: 10.1109/TUFFC.2016.2598180.
2
Ultrasound Vector Flow Imaging-Part I: Sequential Systems.
IEEE Trans Ultrason Ferroelectr Freq Control. 2016 Nov;63(11):1704-1721. doi: 10.1109/TUFFC.2016.2600763.
3
Recent developments in vascular ultrasound technology.
Ultrasound. 2015 Aug;23(3):158-65. doi: 10.1177/1742271X15578778. Epub 2015 Mar 26.
4
Plane-wave transverse oscillation for high-frame-rate 2-D vector flow imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2015 Dec;62(12):2126-37. doi: 10.1109/TUFFC.2015.007320.
5
Flow Velocity Mapping Using Contrast Enhanced High-Frame-Rate Plane Wave Ultrasound and Image Tracking: Methods and Initial in Vitro and in Vivo Evaluation.
Ultrasound Med Biol. 2015 Nov;41(11):2913-25. doi: 10.1016/j.ultrasmedbio.2015.06.012. Epub 2015 Aug 12.
6
Assessment of cardiac dysfunction by dissipative energy loss derived from vector flow mapping.
J Cardiol. 2016 Jan;67(1):122. doi: 10.1016/j.jjcc.2015.06.004. Epub 2015 Jul 9.
7
8
Comparison of carotid artery blood velocity measurements by vector and standard Doppler approaches.
Ultrasound Med Biol. 2015 May;41(5):1354-62. doi: 10.1016/j.ultrasmedbio.2015.01.008. Epub 2015 Feb 23.
10
Novel wave intensity analysis of arterial pulse wave propagation accounting for peripheral reflections.
Int J Numer Method Biomed Eng. 2014 Feb;30(2):249-79. doi: 10.1002/cnm.2602. Epub 2013 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验