Suppr超能文献

斑马鱼模型通道网络中壁面剪应力的变化。

Variation in wall shear stress in channel networks of zebrafish models.

作者信息

Choi Woorak, Kim Hye Mi, Park Sungho, Yeom Eunseop, Doh Junsang, Lee Sang Joon

机构信息

Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea.

Division of Integrative Biosciences and Biotechnology (IBB), Pohang University of Science and Technology (POSTECH), Pohang, South Korea.

出版信息

J R Soc Interface. 2017 Feb;14(127). doi: 10.1098/rsif.2016.0900.

Abstract

Physiological functions of vascular endothelial cells (ECs) vary depending on wall shear stress (WSS) magnitude, and the functional change affects the pathologies of various cardiovascular systems. Several in vitro and in vivo models have been used to investigate the functions of ECs under different WSS conditions. However, these models have technical limitations in precisely mimicking the physiological environments of ECs and monitoring temporal variations of ECs in detail. Although zebrafish (Danio rerio) has several strategies to overcome these technical limitations, zebrafish cannot be used as a perfect animal model because applying various WSS conditions on blood vessels of zebrafish is difficult. This study proposes a new zebrafish model in which various WSS can be applied to the caudal vein. The WSS magnitude is controlled by blocking some parts of blood-vessel networks. The accuracy and reproducibility of the proposed method are validated using an equivalent circuit model of blood vessels in zebrafish. The proposed method is applied to lipopolysaccharide (LPS)-stimulated zebrafish as a typical application. The proposed zebrafish model can be used as an in vivo animal model to investigate the relationship between WSS and EC physiology or WSS-induced cardiovascular diseases.

摘要

血管内皮细胞(ECs)的生理功能因壁面剪应力(WSS)大小而异,这种功能变化会影响各种心血管系统的病理状况。已经使用了几种体外和体内模型来研究不同WSS条件下ECs的功能。然而,这些模型在精确模拟ECs的生理环境和详细监测ECs的时间变化方面存在技术局限性。尽管斑马鱼(Danio rerio)有多种策略来克服这些技术局限性,但由于难以在斑马鱼血管上施加各种WSS条件,斑马鱼不能用作完美的动物模型。本研究提出了一种新的斑马鱼模型,其中可以对尾静脉施加各种WSS。通过阻断部分血管网络来控制WSS大小。使用斑马鱼血管的等效电路模型验证了所提方法的准确性和可重复性。作为一个典型应用,将所提方法应用于脂多糖(LPS)刺激的斑马鱼。所提出的斑马鱼模型可作为体内动物模型,用于研究WSS与EC生理学之间的关系或WSS诱导的心血管疾病。

相似文献

1
Variation in wall shear stress in channel networks of zebrafish models.
J R Soc Interface. 2017 Feb;14(127). doi: 10.1098/rsif.2016.0900.
2
Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish.
PLoS One. 2015 Nov 12;10(11):e0142945. doi: 10.1371/journal.pone.0142945. eCollection 2015.
4
An In Vitro Hemodynamic Flow System to Study the Effects of Quantified Shear Stresses on Endothelial Cells.
Cardiovasc Eng Technol. 2016 Mar;7(1):44-57. doi: 10.1007/s13239-015-0250-x. Epub 2015 Nov 30.
5
Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients.
Ann Biomed Eng. 2016 Jul;44(7):2261-72. doi: 10.1007/s10439-015-1500-7. Epub 2015 Nov 20.
8
High fluid shear stress and spatial shear stress gradients affect endothelial proliferation, survival, and alignment.
Ann Biomed Eng. 2011 Jun;39(6):1620-31. doi: 10.1007/s10439-011-0267-8. Epub 2011 Feb 11.
9
Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
J Biomech Eng. 2015 Jun;137(6):061008. doi: 10.1115/1.4030055. Epub 2015 Apr 6.
10
Endothelial cells express a unique transcriptional profile under very high wall shear stress known to induce expansive arterial remodeling.
Am J Physiol Cell Physiol. 2012 Apr 15;302(8):C1109-18. doi: 10.1152/ajpcell.00369.2011. Epub 2011 Dec 14.

引用本文的文献

2
Computational simulations of the 4D micro-circulatory network in zebrafish tail amputation and regeneration.
J R Soc Interface. 2022 Feb;19(187):20210898. doi: 10.1098/rsif.2021.0898. Epub 2022 Feb 16.
3
Haemodynamic dependence of mechano-genetic evolution of the cardiovascular system in Japanese medaka.
J R Soc Interface. 2021 Oct;18(183):20210752. doi: 10.1098/rsif.2021.0752. Epub 2021 Oct 27.
4
Remodeling of the Microvasculature: May the Blood Flow Be With You.
Front Physiol. 2020 Oct 15;11:586852. doi: 10.3389/fphys.2020.586852. eCollection 2020.

本文引用的文献

1
Association of Early Atherosclerosis with Vascular Wall Shear Stress in Hypercholesterolemic Zebrafish.
PLoS One. 2015 Nov 12;10(11):e0142945. doi: 10.1371/journal.pone.0142945. eCollection 2015.
2
Changes in velocity profile according to blood viscosity in a microchannel.
Biomicrofluidics. 2014 Jun 9;8(3):034110. doi: 10.1063/1.4883275. eCollection 2014 May.
3
Fluid Mechanics, Arterial Disease, and Gene Expression.
Annu Rev Fluid Mech. 2014 Jan;46:591-614. doi: 10.1146/annurev-fluid-010313-141309.
4
Quantification of blood flow and topology in developing vascular networks.
PLoS One. 2014 May 13;9(5):e96856. doi: 10.1371/journal.pone.0096856. eCollection 2014.
6
Endothelial cilia mediate low flow sensing during zebrafish vascular development.
Cell Rep. 2014 Mar 13;6(5):799-808. doi: 10.1016/j.celrep.2014.01.032. Epub 2014 Feb 20.
7
In vivo wall shear measurements within the developing zebrafish heart.
PLoS One. 2013 Oct 4;8(10):e75722. doi: 10.1371/journal.pone.0075722. eCollection 2013.
8
Pulse propagation by a capacitive mechanism drives embryonic blood flow.
Development. 2013 Nov;140(21):4426-34. doi: 10.1242/dev.096768. Epub 2013 Oct 2.
9
The atherosusceptible endothelium: endothelial phenotypes in complex haemodynamic shear stress regions in vivo.
Cardiovasc Res. 2013 Jul 15;99(2):315-27. doi: 10.1093/cvr/cvt101. Epub 2013 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验