Kuo David E, Wei Maggie M, Armbrust Karen R, Knickelbein Jared E, Yeung Ian Y L, Nussenblatt Robert B, Chan Chi-Chao, Sen Hatice Nida
1 Laboratory of Immunology, National Eye Institute, National Institutes of Health , Bethesda, Maryland.
2 University of California , San Diego, School of Medicine, San Diego, California.
J Ocul Pharmacol Ther. 2017 May;33(4):319-324. doi: 10.1089/jop.2016.0132. Epub 2017 Feb 3.
To investigate the effectiveness of gradient boosting to classify endophthalmitis versus uveitis and lymphoma by intraocular cytokine levels.
Patient diagnoses and aqueous and vitreous levels of interleukin (IL)-6 and IL-10 were retrospectively extracted from a National Eye Institute Histopathology Core database and compared by Kruskal-Wallis and post hoc Dunn tests. A gradient-boosted decision tree classifier was trained to differentiate endophthalmitis versus uveitis and lymphoma from vitreous IL-6 and IL-10, vitreous IL-6 only, and aqueous IL-6 only data sets; and was tested with 80-20 train-test split and 3-fold cross-validation of the training set.
Seven endophthalmitis, 29 lymphoma, and 49 uveitis patients were included. IL-6 was higher in endophthalmitis than uveitis (P = 0.0713 aqueous, 0.0014 vitreous) and lymphoma (P = 0.0032 aqueous, 0.0001 vitreous). IL-10 was significantly higher in lymphoma than uveitis (P = 0.0017 aqueous, 0.0014 vitreous). Three-fold cross validation demonstrated 95% ± 5%, 95% ± 4%, and 97% ± 5% predictive accuracy for vitreous IL-6 and IL-10, vitreous IL-6 only, and aqueous IL-6 only data sets. Upon validation with the testing set, vitreous IL-6 and IL-10 and aqueous IL-6 only data sets achieved 100% predictive accuracy and vitreous IL-6 only data achieved 93% predictive accuracy with 100% sensitivity, 92% specificity, and an area under the receiver operating characteristic curve (ROC/AUC) of 96%.
With limited sample size, gradient boosting can differentiate endophthalmitis from uveitis and lymphoma by IL-6 and IL-10 with high sensitivity and specificity; however, a larger cohort is needed for further validation.
通过眼内细胞因子水平,研究梯度提升算法对眼内炎与葡萄膜炎及淋巴瘤进行分类的有效性。
从美国国立眼科研究所组织病理学核心数据库中回顾性提取患者诊断信息以及房水和玻璃体内白细胞介素(IL)-6和IL-10的水平,并通过Kruskal-Wallis检验和事后Dunn检验进行比较。训练一个梯度提升决策树分类器,以根据玻璃体内IL-6和IL-10、仅玻璃体内IL-6以及仅房水IL-6数据集区分眼内炎与葡萄膜炎及淋巴瘤;并采用80-20训练-测试分割和训练集的3折交叉验证进行测试。
纳入7例眼内炎患者、29例淋巴瘤患者和49例葡萄膜炎患者。眼内炎患者的IL-6水平高于葡萄膜炎患者(房水P = 0.0713,玻璃体P = 0.0014)和淋巴瘤患者(房水P = 0.0032,玻璃体P = 0.0001)。淋巴瘤患者的IL-10水平显著高于葡萄膜炎患者(房水P = 0.0017,玻璃体P = 0.0014)。3折交叉验证显示,对于玻璃体内IL-6和IL-10、仅玻璃体内IL-6以及仅房水IL-6数据集,预测准确率分别为95%±5%、95%±4%和97%±5%。在使用测试集进行验证时,玻璃体内IL-6和IL-10以及仅房水IL-6数据集的预测准确率达到100%,仅玻璃体内IL-6数据集的预测准确率为93%,敏感性为100%,特异性为92%,受试者操作特征曲线下面积(ROC/AUC)为96%。
在样本量有限的情况下,梯度提升算法能够通过IL-6和IL-10以高敏感性和特异性区分眼内炎与葡萄膜炎及淋巴瘤;然而,需要更大的队列进行进一步验证。