Suppr超能文献

基于房水和玻璃体中白细胞介素-6及白细胞介素-10水平的梯度提升决策树分类法鉴别眼内炎与葡萄膜炎及淋巴瘤

Gradient Boosted Decision Tree Classification of Endophthalmitis Versus Uveitis and Lymphoma from Aqueous and Vitreous IL-6 and IL-10 Levels.

作者信息

Kuo David E, Wei Maggie M, Armbrust Karen R, Knickelbein Jared E, Yeung Ian Y L, Nussenblatt Robert B, Chan Chi-Chao, Sen Hatice Nida

机构信息

1 Laboratory of Immunology, National Eye Institute, National Institutes of Health , Bethesda, Maryland.

2 University of California , San Diego, School of Medicine, San Diego, California.

出版信息

J Ocul Pharmacol Ther. 2017 May;33(4):319-324. doi: 10.1089/jop.2016.0132. Epub 2017 Feb 3.

Abstract

PURPOSE

To investigate the effectiveness of gradient boosting to classify endophthalmitis versus uveitis and lymphoma by intraocular cytokine levels.

METHOD

Patient diagnoses and aqueous and vitreous levels of interleukin (IL)-6 and IL-10 were retrospectively extracted from a National Eye Institute Histopathology Core database and compared by Kruskal-Wallis and post hoc Dunn tests. A gradient-boosted decision tree classifier was trained to differentiate endophthalmitis versus uveitis and lymphoma from vitreous IL-6 and IL-10, vitreous IL-6 only, and aqueous IL-6 only data sets; and was tested with 80-20 train-test split and 3-fold cross-validation of the training set.

RESULTS

Seven endophthalmitis, 29 lymphoma, and 49 uveitis patients were included. IL-6 was higher in endophthalmitis than uveitis (P = 0.0713 aqueous, 0.0014 vitreous) and lymphoma (P = 0.0032 aqueous, 0.0001 vitreous). IL-10 was significantly higher in lymphoma than uveitis (P = 0.0017 aqueous, 0.0014 vitreous). Three-fold cross validation demonstrated 95% ± 5%, 95% ± 4%, and 97% ± 5% predictive accuracy for vitreous IL-6 and IL-10, vitreous IL-6 only, and aqueous IL-6 only data sets. Upon validation with the testing set, vitreous IL-6 and IL-10 and aqueous IL-6 only data sets achieved 100% predictive accuracy and vitreous IL-6 only data achieved 93% predictive accuracy with 100% sensitivity, 92% specificity, and an area under the receiver operating characteristic curve (ROC/AUC) of 96%.

CONCLUSIONS

With limited sample size, gradient boosting can differentiate endophthalmitis from uveitis and lymphoma by IL-6 and IL-10 with high sensitivity and specificity; however, a larger cohort is needed for further validation.

摘要

目的

通过眼内细胞因子水平,研究梯度提升算法对眼内炎与葡萄膜炎及淋巴瘤进行分类的有效性。

方法

从美国国立眼科研究所组织病理学核心数据库中回顾性提取患者诊断信息以及房水和玻璃体内白细胞介素(IL)-6和IL-10的水平,并通过Kruskal-Wallis检验和事后Dunn检验进行比较。训练一个梯度提升决策树分类器,以根据玻璃体内IL-6和IL-10、仅玻璃体内IL-6以及仅房水IL-6数据集区分眼内炎与葡萄膜炎及淋巴瘤;并采用80-20训练-测试分割和训练集的3折交叉验证进行测试。

结果

纳入7例眼内炎患者、29例淋巴瘤患者和49例葡萄膜炎患者。眼内炎患者的IL-6水平高于葡萄膜炎患者(房水P = 0.0713,玻璃体P = 0.0014)和淋巴瘤患者(房水P = 0.0032,玻璃体P = 0.0001)。淋巴瘤患者的IL-10水平显著高于葡萄膜炎患者(房水P = 0.0017,玻璃体P = 0.0014)。3折交叉验证显示,对于玻璃体内IL-6和IL-10、仅玻璃体内IL-6以及仅房水IL-6数据集,预测准确率分别为95%±5%、95%±4%和97%±5%。在使用测试集进行验证时,玻璃体内IL-6和IL-10以及仅房水IL-6数据集的预测准确率达到100%,仅玻璃体内IL-6数据集的预测准确率为93%,敏感性为100%,特异性为92%,受试者操作特征曲线下面积(ROC/AUC)为96%。

结论

在样本量有限的情况下,梯度提升算法能够通过IL-6和IL-10以高敏感性和特异性区分眼内炎与葡萄膜炎及淋巴瘤;然而,需要更大的队列进行进一步验证。

相似文献

2
Logistic Regression Classification of Primary Vitreoretinal Lymphoma versus Uveitis by Interleukin 6 and Interleukin 10 Levels.
Ophthalmology. 2020 Jul;127(7):956-962. doi: 10.1016/j.ophtha.2020.01.042. Epub 2020 Feb 5.
3
Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles.
Ophthalmology. 2021 Aug;128(8):1197-1208. doi: 10.1016/j.ophtha.2021.01.019. Epub 2021 Jan 21.
4
Logistic regression models of cytokines in differentiating vitreoretinal lymphoma from uveitis.
J Clin Lab Anal. 2022 Oct;36(10):e24689. doi: 10.1002/jcla.24689. Epub 2022 Sep 13.
6
IL-10 measurement in aqueous humor for screening patients with suspicion of primary intraocular lymphoma.
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3253-9. doi: 10.1167/iovs.06-0031.
9
Vitreous proteomics, a gateway to improved understanding and stratification of diverse uveitis aetiologies.
Acta Ophthalmol. 2022 Jun;100(4):403-413. doi: 10.1111/aos.14993. Epub 2021 Jul 28.
10
Elevated vitreous interleukin-10 level is not diagnostic of intraocular-central nervous system lymphoma.
Ophthalmology. 1999 Dec;106(12):2291-5. doi: 10.1016/s0161-6420(99)90528-6.

引用本文的文献

1
miR-27a-3p promotes inflammatory response in infectious endophthalmitis via targeting TSC1.
Sci Rep. 2024 Aug 21;14(1):19353. doi: 10.1038/s41598-024-69964-6.
2
TMJOAI: An Artificial Web-Based Intelligence Tool for Early Diagnosis of the Temporomandibular Joint Osteoarthritis.
Clin Image Based Proced Distrib Collab Learn Artif Intell Combat COVID 19 Secur Priv Preserv Mach Learn (2021). 2021 Sep-Oct;12969:78-87. doi: 10.1007/978-3-030-90874-4_8. Epub 2021 Nov 14.
3
Establishment of a prediction tool for ocular trauma patients with machine learning algorithm.
Int J Ophthalmol. 2021 Dec 18;14(12):1941-1949. doi: 10.18240/ijo.2021.12.20. eCollection 2021.
5
Cytokines in uveitis.
Curr Opin Ophthalmol. 2018 May;29(3):267-274. doi: 10.1097/ICU.0000000000000466.

本文引用的文献

2
Emerging techniques for pathogen discovery in endophthalmitis.
Curr Opin Ophthalmol. 2015 May;26(3):221-5. doi: 10.1097/ICU.0000000000000145.
3
Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases.
Ophthalmology. 2013 Sep;120(9):1761-8. doi: 10.1016/j.ophtha.2013.02.020. Epub 2013 May 7.
6
Intraocular lymphoma: a clinical perspective.
Eye (Lond). 2013 Feb;27(2):153-62. doi: 10.1038/eye.2012.250. Epub 2012 Nov 30.
7
Role of inflammation in endophthalmitis.
Mediators Inflamm. 2012;2012:196094. doi: 10.1155/2012/196094. Epub 2012 Sep 2.
8
Clinical features and diagnostic significance of the intraocular fluid of 217 patients with intraocular lymphoma.
Jpn J Ophthalmol. 2012 Jul;56(4):383-9. doi: 10.1007/s10384-012-0150-7. Epub 2012 Jun 5.
9
Molecular biomarkers for the diagnosis of primary vitreoretinal lymphoma.
Int J Mol Sci. 2011;12(9):5684-97. doi: 10.3390/ijms12095684. Epub 2011 Sep 5.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验