Biswas Rajoshi, Hanania Nicola A, Sabharwal Ashutosh
1 Department of Electrical and Computer Engineering, Rice University , Houston, Texas.
2 Section of Pulmonary, Critical Care, and Sleep Medicine, Baylor College of Medicine , Houston, Texas.
J Aerosol Med Pulm Drug Deliv. 2017 Aug;30(4):256-266. doi: 10.1089/jamp.2015.1278. Epub 2017 Feb 3.
The effectiveness of metered-dose inhalers (MDIs) in delivering medication to the lungs highly depends on its correct usage technique. Current guidelines state optimal technique for high lung deposition should include a slow inhalation (>5 seconds) at an inspiratory flow rate of 30 L/min and inhaler actuation at the start of inhalation. However, these recommendations were based on clinical studies using CFC (chlorofluorocarbon)-MDIs and in vitro studies of HFA (hydrofluoroalkane)-MDIs using idealized MDI techniques of uniform inhalation and actuation, disregarding the nonuniform techniques of actual patients.
To better understand the effects of time-varying MDI usage parameters on lung deposition of aerosol delivered by an HFA-MDI, we conducted an in vitro study modeled on real-life variable inspiratory flow and actuation techniques recorded from 15 subjects with asthma/chronic obstructive pulmonary disease (COPD). We developed a model representing the time-varying inspiratory flow waveforms and actuation timings based on 43 MDI techniques recorded from patients. Furthermore, we constructed an in vitro experimental setup using a mouth-throat cast, programmable MDI actuator, and breath simulator to evaluate lung deposition for the MDI techniques derived from our model.
High inspiratory flow rates, 60-90 L/min, consistently resulted in high in vitro lung deposition (>40%) of aerosol (albuterol delivered from Ventolin HFA-MDI) compared to 30 L/min when MDI actuation occurred in the first half of inhalation. Also, positive coordination resulted in higher in vitro lung deposition compared with negative or zero coordination (actuating before or at the start of inspiration). Furthermore, variation in coordination affected lung deposition more significantly (23%) than flow rate or duration of inspiration (≤5%).
In an in vitro experimental model based on inhalation data from patients with asthma and COPD, we demonstrated that aerosol lung deposition emitted from Ventolin HFA-MDI is most optimal for MDI actuation in the first half of inspiration at high flow rates (60-90 L/min).
定量吸入器(MDIs)将药物输送至肺部的有效性高度依赖于其正确的使用技术。当前指南指出,实现高肺部沉积的最佳技术应包括以30升/分钟的吸气流量进行缓慢吸气(>5秒),并在吸气开始时启动吸入器。然而,这些建议是基于使用氯氟烃(CFC)-MDIs的临床研究以及使用理想化的均匀吸入和启动MDI技术对氢氟烷烃(HFA)-MDIs进行的体外研究,而忽略了实际患者的非均匀技术。
为了更好地理解随时间变化的MDI使用参数对HFA-MDI输送的气雾剂肺部沉积的影响,我们进行了一项体外研究,该研究基于从15名哮喘/慢性阻塞性肺疾病(COPD)患者记录的现实生活中可变的吸气流量和启动技术进行建模。我们根据从患者记录的43种MDI技术开发了一个代表随时间变化的吸气流量波形和启动时间的模型。此外,我们使用口咽模型、可编程MDI执行器和呼吸模拟器构建了一个体外实验装置,以评估我们模型得出的MDI技术的肺部沉积情况。
与MDI在吸气前半段启动时30升/分钟的情况相比,60 - 90升/分钟的高吸气流量始终导致气雾剂(从万托林HFA-MDI输送的沙丁胺醇)在体外具有较高的肺部沉积(>40%)。此外,正向协调与负向或零协调(在吸气前或吸气开始时启动)相比,导致体外肺部沉积更高。此外,协调变化对肺部沉积的影响(23%)比流速或吸气持续时间(≤5%)更显著。
在基于哮喘和COPD患者吸入数据的体外实验模型中,我们证明了从万托林HFA-MDI喷出的气雾剂在高流速(60 - 90升/分钟)下吸气前半段启动MDI时肺部沉积最为理想。