Suppr超能文献

发展研究中最优设计的特征选择方法。

Feature Selection Methods for Optimal Design of Studies for Developmental Inquiry.

机构信息

Department of Human Development and Family Studies, Pennsylvania State University, University Park.

Department of Psychology, Humboldt-Universität zu Berlin, Germany.

出版信息

J Gerontol B Psychol Sci Soc Sci. 2017 Dec 15;73(1):113-123. doi: 10.1093/geronb/gbx008.

Abstract

OBJECTIVES

As diary, panel, and experience sampling methods become easier to implement, studies of development and aging are adopting more and more intensive study designs. However, if too many measures are included in such designs, interruptions for measurement may constitute a significant burden for participants. We propose the use of feature selection-a data-driven machine learning process-in study design and selection of measures that show the most predictive power in pilot data.

METHOD

We introduce an analytical paradigm based on the feature importance estimation and recursive feature elimination with decision tree ensembles and illustrate its utility using empirical data from the German Socio-Economic Panel (SOEP).

RESULTS

We identified a subset of 20 measures from the SOEP data set that maintain much of the ability of the original data set to predict life satisfaction and health across younger, middle, and older age groups.

DISCUSSION

Feature selection techniques permit researchers to choose measures that are maximally predictive of relevant outcomes, even when there are interactions or nonlinearities. These techniques facilitate decisions about which measures may be dropped from a study while maintaining efficiency of prediction across groups and reducing costs to the researcher and burden on the participants.

摘要

目的

随着日记、面板和经验采样方法变得更容易实施,发展和衰老的研究越来越多地采用更密集的研究设计。然而,如果在这样的设计中包含太多的措施,测量的中断可能会对参与者构成重大负担。我们建议在研究设计和措施选择中使用特征选择 - 一种基于数据的机器学习过程,该过程在试点数据中显示出最具预测能力的措施。

方法

我们引入了一种基于特征重要性估计和递归特征消除的分析范例,该范例基于决策树集成,并使用德国社会经济面板(SOEP)的实证数据说明了其效用。

结果

我们从 SOEP 数据集中确定了一个 20 个指标的子集,这些指标在预测年轻、中年和老年组的生活满意度和健康方面保留了原始数据集的大部分能力。

讨论

特征选择技术允许研究人员选择对相关结果具有最大预测能力的措施,即使存在交互作用或非线性关系。这些技术有助于决定在保持组间预测效率的同时,可以从研究中删除哪些措施,同时降低研究人员的成本和参与者的负担。

相似文献

1
4
Statistical design and estimation for the national social life, health, and aging project.国家社会生活、健康与老龄化项目的统计设计与估计
J Gerontol B Psychol Sci Soc Sci. 2009 Nov;64 Suppl 1(Suppl 1):i12-9. doi: 10.1093/geronb/gbp045. Epub 2009 Jun 30.
6
Getting together: Social contact frequency across the life span.相聚:一生之中的社交接触频率
Dev Psychol. 2017 Aug;53(8):1571-1588. doi: 10.1037/dev0000349. Epub 2017 May 25.
7
Tree-based models for survival data with competing risks.基于树的竞争风险生存数据分析模型。
Comput Methods Programs Biomed. 2018 Jun;159:185-198. doi: 10.1016/j.cmpb.2018.03.017. Epub 2018 Mar 21.

引用本文的文献

3
A Multiclass Classification Model for Tooth Removal Procedures.牙齿拔除术的多类分类模型。
J Dent Res. 2022 Oct;101(11):1357-1362. doi: 10.1177/00220345221117745. Epub 2022 Sep 9.
7
MEG Sensor Selection for Neural Speech Decoding.用于神经语音解码的脑磁图(MEG)传感器选择
IEEE Access. 2020;8:182320-182337. doi: 10.1109/access.2020.3028831. Epub 2020 Oct 6.

本文引用的文献

3
Learning Nonlinear Functions Using Regularized Greedy Forest.使用正则化贪心森林学习非线性函数。
IEEE Trans Pattern Anal Mach Intell. 2014 May;36(5):942-54. doi: 10.1109/TPAMI.2013.159.
8
Structural equation model trees.结构方程模型树。
Psychol Methods. 2013 Mar;18(1):71-86. doi: 10.1037/a0030001. Epub 2012 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验