Suppr超能文献

使用自动瞳孔测量法从单眼瞳孔光反应预测青光眼功能和结构损伤的程度

Predicting the Magnitude of Functional and Structural Damage in Glaucoma From Monocular Pupillary Light Responses Using Automated Pupillography.

作者信息

Pradhan Zia S, Rao Harsha L, Puttaiah Narendra K, Kadambi Sujatha V, Dasari Srilakshmi, Reddy Hemanth B, Palakurthy Meena, Riyazuddin Mohammed, Rao Dhanaraj A S

机构信息

Narayana Nethralaya, Rajajinagar, Bengaluru, India.

出版信息

J Glaucoma. 2017 May;26(5):409-414. doi: 10.1097/IJG.0000000000000634.

Abstract

PURPOSE

To predict the magnitude of functional damage [mean deviation (MD) on visual field examination] and structural damage [retinal nerve fiber layer (RNFL) and ganglion cell complex (GCC) thickness on spectral domain optical coherence tomography] in glaucoma from monocular pupillary light response measurements using automated pupillography.

METHODS

In total, 59 subjects (118 eyes) with either a confirmed or suspected diagnosis of glaucoma underwent automated pupillography, along with visual fields and spectral domain optical coherence tomography examinations. Association between pupillary light response measurements of each eye [amplitude of constriction, latency of onset of constriction (Loc), latency of maximal constriction (Lmaxc), velocity of constriction and velocity of redilation] and corresponding MD, average RNFL, and average GCC measurements were evaluated using univariate and multivariate regression analysis after accounting for the multicollinearity. Goodness of fit of the multivariate models was evaluated using coefficient of determination (R).

RESULTS

Multivariate regression models that contained Loc and Lmaxc showed the best association with MD (R of 0.30), average RNFL thickness (R=0.18) and average GCC thickness (R=0.26). The formula that best predicts the MD could be described as: MD=-14.06-0.15×Loc+0.06×Lmaxc. The formula that best predicts the average RNFL thickness could be described as: Average RNFL thickness=67.18-0.22×Loc+0.09×Lmaxc.

CONCLUSIONS

Glaucomatous damage as estimated by MD, RNFL, and GCC thickness measurements were best predicted by the latency parameters (Loc and Lmaxc) of pupillography. Worsening of glaucomatous damage resulted in a delayed onset of pupillary constriction and a decreased Lmaxc.

摘要

目的

利用自动瞳孔测量法,通过单眼瞳孔对光反应测量来预测青光眼患者的功能损害程度(视野检查中的平均偏差[MD])和结构损害程度[光谱域光学相干断层扫描测量的视网膜神经纤维层[RNFL]和神经节细胞复合体[GCC]厚度]。

方法

共有59例确诊或疑似青光眼的受试者(118只眼)接受了自动瞳孔测量,同时进行了视野检查和光谱域光学相干断层扫描检查。在考虑多重共线性后,使用单变量和多变量回归分析评估每只眼的瞳孔对光反应测量值[收缩幅度、收缩起始潜伏期(Loc)、最大收缩潜伏期(Lmaxc)、收缩速度和舒张速度]与相应的MD、平均RNFL和平均GCC测量值之间的关联。使用决定系数(R)评估多变量模型的拟合优度。

结果

包含Loc和Lmaxc的多变量回归模型显示与MD(R = 0.30)、平均RNFL厚度(R = 0.18)和平均GCC厚度(R = 0.26)的关联最佳。最佳预测MD的公式可描述为:MD = -14.06 - 0.15×Loc + 0.06×Lmaxc。最佳预测平均RNFL厚度的公式可描述为:平均RNFL厚度 = 67.18 - 0.22×Loc + 0.09×Lmaxc。

结论

通过瞳孔测量的潜伏期参数(Loc和Lmaxc)能最好地预测由MD、RNFL和GCC厚度测量所估计的青光眼损害。青光眼损害的加重导致瞳孔收缩起始延迟和Lmaxc降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验