Suppr超能文献

解释妄想:通过基础神经科学和计算神经科学减少不确定性

Explaining Delusions: Reducing Uncertainty Through Basic and Computational Neuroscience.

作者信息

Feeney Erin J, Groman Stephanie M, Taylor Jane R, Corlett Philip R

机构信息

Department of Psychiatry, Ribicoff Research Facilities, Connecticut Mental Health Center, Yale University, Park Street, New Haven, CT, USA.

Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA.

出版信息

Schizophr Bull. 2017 Mar 1;43(2):263-272. doi: 10.1093/schbul/sbw194.

Abstract

Delusions, the fixed false beliefs characteristic of psychotic illness, have long defied understanding despite their response to pharmacological treatments (e.g., D2 receptor antagonists). However, it can be challenging to discern what makes beliefs delusional compared with other unusual or erroneous beliefs. We suggest mapping the putative biology to clinical phenomenology with a cognitive psychology of belief, culminating in a teleological approach to beliefs and brain function supported by animal and computational models. We argue that organisms strive to minimize uncertainty about their future states by forming and maintaining a set of beliefs (about the organism and the world) that are robust, but flexible. If uncertainty is generated endogenously, beliefs begin to depart from consensual reality and can manifest into delusions. Central to this scheme is the notion that formal associative learning theory can provide an explanation for the development and persistence of delusions. Beliefs, in animals and humans, may be associations between representations (e.g., of cause and effect) that are formed by minimizing uncertainty via new learning and attentional allocation. Animal research has equipped us with a deep mechanistic basis of these processes, which is now being applied to delusions. This work offers the exciting possibility of completing revolutions of translation, from the bedside to the bench and back again. The more we learn about animal beliefs, the more we may be able to apply to human beliefs and their aberrations, enabling a deeper mechanistic understanding.

摘要

妄想是精神病性疾病的特征性固定错误信念,尽管对药物治疗(如D2受体拮抗剂)有反应,但长期以来一直难以理解。然而,与其他异常或错误信念相比,辨别哪些信念是妄想可能具有挑战性。我们建议用信念的认知心理学将假定的生物学与临床现象学进行映射,最终形成一种由动物和计算模型支持的关于信念和脑功能的目的论方法。我们认为,生物体通过形成和维持一组稳健但灵活的信念(关于生物体和世界)来努力将其未来状态的不确定性降至最低。如果不确定性是内生产生的,信念就会开始偏离共识现实,并可能表现为妄想。该方案的核心是形式联想学习理论可以为妄想的发展和持续存在提供解释这一观点。在动物和人类中,信念可能是通过新的学习和注意力分配将不确定性降至最低而形成的表征(如因果关系)之间的关联。动物研究为我们提供了这些过程的深入机制基础,现在正被应用于妄想研究。这项工作提供了完成从床边到实验室再回到床边的翻译革命的令人兴奋的可能性。我们对动物信念了解得越多,就越能够应用于人类信念及其异常情况,从而实现更深入的机制理解。

相似文献

1
Explaining Delusions: Reducing Uncertainty Through Basic and Computational Neuroscience.
Schizophr Bull. 2017 Mar 1;43(2):263-272. doi: 10.1093/schbul/sbw194.
2
A distinct inferential mechanism for delusions in schizophrenia.
Brain. 2019 Jun 1;142(6):1797-1812. doi: 10.1093/brain/awz051.
3
Understanding Cognitive Behavioral Therapy for Psychosis Through the Predictive Coding Framework.
Biol Psychiatry Glob Open Sci. 2024 May 13;4(4):100333. doi: 10.1016/j.bpsgos.2024.100333. eCollection 2024 Jul.
4
Modelling delusions as temporally-evolving beliefs.
Cogn Neuropsychiatry. 2021 Jul;26(4):231-241. doi: 10.1080/13546805.2021.1938984. Epub 2021 Jun 8.
5
Computational Psychiatry and the Challenge of Schizophrenia.
Schizophr Bull. 2017 May 1;43(3):473-475. doi: 10.1093/schbul/sbx025.
7
Explaining delusions: a cognitive perspective.
Trends Cogn Sci. 2006 May;10(5):219-26. doi: 10.1016/j.tics.2006.03.004.
8
Dopamine, cognitive biases and assessment of certainty: A neurocognitive model of delusions.
Clin Psychol Rev. 2017 Jun;54:96-106. doi: 10.1016/j.cpr.2017.04.006. Epub 2017 Apr 18.
9
The doxastic shear pin: delusions as errors of learning and memory.
Cogn Neuropsychiatry. 2016;21(1):73-89. doi: 10.1080/13546805.2015.1136206. Epub 2016 Feb 15.
10
Delusions and theories of belief.
Conscious Cogn. 2020 May;81:102935. doi: 10.1016/j.concog.2020.102935. Epub 2020 Apr 22.

引用本文的文献

1
Delusional Unreality and Predictive Processing.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2024 Dec 20. doi: 10.1016/j.bpsc.2024.12.006.
2
A prefrontal thalamocortical readout for conflict-related executive dysfunction in schizophrenia.
Cell Rep Med. 2024 Nov 19;5(11):101802. doi: 10.1016/j.xcrm.2024.101802. Epub 2024 Nov 7.
3
Embracing variability in the search for biological mechanisms of psychiatric illness.
Trends Cogn Sci. 2025 Jan;29(1):85-99. doi: 10.1016/j.tics.2024.09.010. Epub 2024 Nov 6.
5
Lesions to the mediodorsal thalamus, but not orbitofrontal cortex, enhance volatility beliefs linked to paranoia.
Cell Rep. 2024 Jun 25;43(6):114355. doi: 10.1016/j.celrep.2024.114355. Epub 2024 Jun 13.
6
Different learning aberrations relate to delusion-like beliefs with different contents.
Brain. 2024 Aug 1;147(8):2854-2866. doi: 10.1093/brain/awae122.
7
Can the Predictive Processing Framework Explain the Persistence of Delusional Beliefs?
Schizophr Bull. 2023 Nov 29;49(6):1411-1413. doi: 10.1093/schbul/sbad124.
9
Models of Dynamic Belief Updating in Psychosis-A Review Across Different Computational Approaches.
Front Psychiatry. 2022 Apr 12;13:814111. doi: 10.3389/fpsyt.2022.814111. eCollection 2022.
10
Belief Updating and Paranoia in Individuals With Schizophrenia.
Biol Psychiatry Cogn Neurosci Neuroimaging. 2022 Nov;7(11):1149-1157. doi: 10.1016/j.bpsc.2022.03.013. Epub 2022 Apr 14.

本文引用的文献

1
Pharmacological Fingerprints of Contextual Uncertainty.
PLoS Biol. 2016 Nov 15;14(11):e1002575. doi: 10.1371/journal.pbio.1002575. eCollection 2016 Nov.
2
The Rubber Tail Illusion as Evidence of Body Ownership in Mice.
J Neurosci. 2016 Oct 26;36(43):11133-11137. doi: 10.1523/JNEUROSCI.3006-15.2016.
3
Unexpected arousal modulates the influence of sensory noise on confidence.
Elife. 2016 Oct 25;5:e18103. doi: 10.7554/eLife.18103.
4
Hypofrontality and Posterior Hyperactivity in Early Schizophrenia: Imaging and Behavior in a Preclinical Model.
Biol Psychiatry. 2017 Mar 15;81(6):503-513. doi: 10.1016/j.biopsych.2016.05.019. Epub 2016 May 30.
5
The neural underpinnings of cognitive flexibility and their disruption in psychotic illness.
Neuroscience. 2017 Mar 14;345:203-217. doi: 10.1016/j.neuroscience.2016.06.005. Epub 2016 Jun 7.
7
The neural basis of reversal learning: An updated perspective.
Neuroscience. 2017 Mar 14;345:12-26. doi: 10.1016/j.neuroscience.2016.03.021. Epub 2016 Mar 12.
9
Probabilistic Reversal Learning in Schizophrenia: Stability of Deficits and Potential Causal Mechanisms.
Schizophr Bull. 2016 Jul;42(4):942-51. doi: 10.1093/schbul/sbv226. Epub 2016 Feb 16.
10
The doxastic shear pin: delusions as errors of learning and memory.
Cogn Neuropsychiatry. 2016;21(1):73-89. doi: 10.1080/13546805.2015.1136206. Epub 2016 Feb 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验