Otopalik Adriane G, Goeritz Marie L, Sutton Alexander C, Brookings Ted, Guerini Cosmo, Marder Eve
Biology Department and Volen Center, Brandeis University, Waltham, United States.
Elife. 2017 Feb 8;6:e22352. doi: 10.7554/eLife.22352.
Neuronal physiology depends on a neuron's ion channel composition and unique morphology. Variable ion channel compositions can produce similar neuronal physiologies across animals. Less is known regarding the morphological precision required to produce reliable neuronal physiology. Theoretical studies suggest that moraphology is tightly tuned to minimize wiring and conduction delay of synaptic events. We utilize high-resolution confocal microscopy and custom computational tools to characterize the morphologies of four neuron types in the stomatogastric ganglion (STG) of the crab . Macroscopic branching patterns and fine cable properties are variable within and across neuron types. We compare these neuronal structures to synthetic minimal spanning neurite trees constrained by a wiring cost equation and find that STG neurons do not adhere to prevailing hypotheses regarding wiring optimization principles. In this highly modulated and oscillating circuit, neuronal structures appear to be governed by a space-filling mechanism that outweighs the cost of inefficient wiring.
神经元生理学取决于神经元的离子通道组成和独特形态。不同的离子通道组成可以在不同动物中产生相似的神经元生理学特征。关于产生可靠的神经元生理学所需的形态精确性,人们了解得较少。理论研究表明,形态经过严格调整以尽量减少突触事件的布线和传导延迟。我们利用高分辨率共聚焦显微镜和定制的计算工具来表征螃蟹口胃神经节(STG)中四种神经元类型的形态。宏观分支模式和精细的电缆特性在神经元类型内部和之间都是可变的。我们将这些神经元结构与受布线成本方程约束的合成最小生成神经突树进行比较,发现STG神经元并不遵循关于布线优化原则的主流假设。在这个高度调制和振荡的电路中,神经元结构似乎受一种空间填充机制支配,这种机制超过了低效布线的成本。