Suppr超能文献

神经元形态增强了对通道密度扰动的鲁棒性。

Neuronal morphology enhances robustness to perturbations of channel densities.

机构信息

Volen Center, Brandeis University, Waltham, MA 02454.

Department of Biology, Brandeis University, Waltham, MA 02454.

出版信息

Proc Natl Acad Sci U S A. 2023 Feb 21;120(8):e2219049120. doi: 10.1073/pnas.2219049120. Epub 2023 Feb 14.

Abstract

Biological neurons show significant cell-to-cell variability but have the striking ability to maintain their key firing properties in the face of unpredictable perturbations and stochastic noise. Using a population of multi-compartment models consisting of soma, neurites, and axon for the lateral pyloric neuron in the crab stomatogastric ganglion, we explore how rebound bursting is preserved when the 14 channel conductances in each model are all randomly varied. The coupling between the axon and other compartments is critical for the ability of the axon to spike during bursts and consequently determines the set of successful solutions. When the coupling deviates from a biologically realistic range, the neuronal tolerance of conductance variations is lessened. Thus, the gross morphological features of these neurons enhance their robustness to perturbations of channel densities and expand the space of individual variability that can maintain a desired output pattern.

摘要

生物神经元表现出显著的细胞间变异性,但具有惊人的能力,能够在面对不可预测的扰动和随机噪声时保持其关键的发射特性。我们使用由躯体、神经突和轴突组成的多腔室模型群体,研究了当每个模型中的 14 种通道电导都随机变化时,反弹爆发是如何被保留的。轴突和其他腔室之间的耦合对于轴突在爆发期间产生尖峰的能力至关重要,从而决定了成功解决方案的集合。当耦合偏离生物现实范围时,神经元对电导变化的容忍度降低。因此,这些神经元的总体形态特征增强了它们对通道密度扰动的鲁棒性,并扩大了可以维持所需输出模式的个体可变性的空间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3b7/9974411/aba125173d25/pnas.2219049120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验