Clegg John R, Zhong Justin X, Irani Afshan S, Gu Joann, Spencer David S, Peppas Nicholas A
Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas.
Institute for Biomaterials Drug Delivery and Regenerative Medicine, The University of Texas at Austin, Austin, Texas.
J Biomed Mater Res A. 2017 Jun;105(6):1565-1574. doi: 10.1002/jbm.a.36029. Epub 2017 Feb 25.
Molecularly imprinted polymers (MIPs) with selective affinity for protein biomarkers could find extensive utility as environmentally robust, cost-efficient biomaterials for diagnostic and therapeutic applications. In order to develop recognitive, synthetic biomaterials for prohibitively expensive protein biomarkers, we have developed a molecular imprinting technique that utilizes structurally similar, analogue proteins. Hydrogel microparticles synthesized by molecular imprinting with trypsin, lysozyme, and cytochrome c possessed an increased affinity for alternate high isoelectric point biomarkers both in isolation and plasma-mimicking adsorption conditions. Imprinted and non-imprinted P(MAA-co-AAm-co-DEAEMA) microgels containing PMAO-PEGMA functionalized polycaprolactone nanoparticles were net-anionic, polydisperse, and irregularly shaped. MIPs and control non-imprinted polymers (NIPs) exhibited regions of Freundlich and BET isotherm adsorption behavior in a range of non-competitive protein solutions, where MIPs exhibited enhanced adsorption capacity in the Freundlich isotherm regions. In a competitive condition, imprinting with analogue templates (trypsin, lysozyme) increased the adsorption capacity of microgels for cytochrome c by 162% and 219%, respectively, as compared to a 122% increase provided by traditional bulk imprinting with cytochrome c. Our results suggest that molecular imprinting with analogue protein templates is a viable synthetic strategy for enhancing hydrogel-biomarker affinity and promoting specific protein adsorption behavior in biological fluids. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1565-1574, 2017.
对蛋白质生物标志物具有选择性亲和力的分子印迹聚合物(MIP),作为用于诊断和治疗应用的环境稳定、成本效益高的生物材料,具有广泛的用途。为了开发针对极其昂贵的蛋白质生物标志物的识别性合成生物材料,我们开发了一种利用结构相似的类似物蛋白质的分子印迹技术。通过用胰蛋白酶、溶菌酶和细胞色素c进行分子印迹合成的水凝胶微粒,在分离和模拟血浆吸附条件下,对其他高离电点生物标志物具有更高的亲和力。含有PMAO-PEGMA功能化聚己内酯纳米颗粒的印迹和非印迹P(MAA-co-AAm-co-DEAEMA)微凝胶呈净阴离子性、多分散且形状不规则。MIP和对照非印迹聚合物(NIP)在一系列非竞争性蛋白质溶液中表现出弗罗因德利希和BET等温吸附行为区域,其中MIP在弗罗因德利希等温线区域表现出增强的吸附能力。在竞争条件下,与用细胞色素c进行传统本体印迹所提供的122%的增加相比,用类似物模板(胰蛋白酶、溶菌酶)进行印迹分别使微凝胶对细胞色素c的吸附能力提高了162%和219%。我们的结果表明,用类似物蛋白质模板进行分子印迹是一种可行的合成策略,可增强水凝胶与生物标志物的亲和力,并促进生物流体中特定蛋白质的吸附行为。©2017威利期刊公司。《生物医学材料研究杂志》A部分:105A:1565 - 1574,2017年。