Bousman Chad A, Forbes Malcolm, Jayaram Mahesh, Eyre Harris, Reynolds Charles F, Berk Michael, Hopwood Malcolm, Ng Chee
Department of Psychiatry, Melbourne Neuropsychiatry Centre, University of Melbourne, 161 Barry Street, Level 3, Parkville, VIC, 3053, Australia.
Department of General Practice, The University of Melbourne, Parkville, VIC, Australia.
BMC Psychiatry. 2017 Feb 8;17(1):60. doi: 10.1186/s12888-017-1230-5.
About half of people who take antidepressants do not respond and many experience adverse effects. These detrimental outcomes are in part a result of the impact of an individual's genetic profile on pharmacokinetics and pharmcodynamics. If known and made available to clinicians, this could improve decision-making and antidepressant therapy outcomes. This has spurred the development of numerous pharmacogenetic-based decision support tools. In this article, we provide an overview of pharmacogenetic decision support tools, with particular focus on tools relevant to antidepressants. We briefly describe the evolution and current state of antidepressant pharmacogenetic decision support tools in clinical practice, followed by the evidence-base for their use. Finally, we present a series of considerations for clinicians contemplating use of these tools and discuss the future of antidepressant pharmacogenetic decision support tools.
服用抗抑郁药的人中约有一半没有反应,许多人还会出现不良反应。这些有害结果部分是由于个体基因谱对药物代谢动力学和药效学的影响所致。如果临床医生了解并能够获取这些信息,这可能会改善决策制定和抗抑郁治疗效果。这推动了众多基于药物遗传学的决策支持工具的开发。在本文中,我们概述了药物遗传学决策支持工具,特别关注与抗抑郁药相关的工具。我们简要描述了抗抑郁药物遗传学决策支持工具在临床实践中的发展历程和现状,随后介绍了其使用的证据基础。最后,我们为考虑使用这些工具的临床医生提出了一系列注意事项,并讨论了抗抑郁药物遗传学决策支持工具的未来。