Suppr超能文献

氧化石墨烯表面涂层对 316L SS 体外神经毒性的衰减作用。

Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating.

机构信息

Department of Metallurgical, Materials Science and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.

Department of Metallurgical, Materials Science and Biomedical Engineering, The University of Texas at El Paso, 500 W University Avenue, El Paso, TX 79968, USA.

出版信息

Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:788-797. doi: 10.1016/j.msec.2016.12.123. Epub 2017 Jan 7.

Abstract

A persistent theme in biomaterials research comprises of surface engineering and modification of bare metallic substrates for improved cellular response and biocompatibility. Graphene Oxide (GO), a derivative of graphene, has outstanding chemical and mechanical properties; its large surface to volume ratio, ease of surface modification and processing make GO an attractive coating material. GO-coatings have been extensively studied as biosensors. Further owing to its surface nano-architecture, GO-coated surfaces promote cell adhesion and growth, making it suitable for tissue engineering applications. The need to improve the long-term durability and therapeutic effectiveness of commercially available bare 316L stainless steel (SS) surfaces led us to adopt a polymer-free approach which is cost-effective and scalable. GO was immobilized on to 316L SS utilizing amide linkage, to generate a strongly adherent uniform coating with surface roughness. GO-coated 316L SS surfaces showed increased hydrophilicity and biocompatibility with SHSY-5Y neuronal cells, which proliferated well and showed decreased reactive oxygen species (ROS) expression. In contrast, cells did not adhere to bare uncoated 316L SS meshes nor maintain viability when cultured in the vicinity of bare meshes. Therefore the combination of the improved surface properties and biocompatibility implies that GO-coating can be utilized to overcome pertinent limitations of bare metallic 316L SS implant surfaces, especially SS neural electrodes. Also, the procedure for making GO-based protective coatings can be applied to numerous other implants where the development of such protective films is necessary.

摘要

生物材料研究的一个持续主题包括对裸金属基底的表面工程和修饰,以改善细胞反应和生物相容性。氧化石墨烯(GO)是石墨烯的衍生物,具有出色的化学和机械性能;其大的表面积与体积比、易于表面修饰和加工,使其成为一种有吸引力的涂层材料。GO 涂层已被广泛研究作为生物传感器。此外,由于其表面纳米结构,GO 涂层表面促进细胞黏附和生长,使其适用于组织工程应用。为了提高商业上可用的裸 316L 不锈钢(SS)表面的长期耐久性和治疗效果,我们采用了一种具有成本效益和可扩展性的无聚合物方法。通过酰胺键将 GO 固定在 316L SS 上,生成具有表面粗糙度的强附着均匀涂层。GO 涂层的 316L SS 表面显示出增加的亲水性和生物相容性,与 SHSY-5Y 神经元细胞具有良好的增殖能力,并且表现出降低的活性氧(ROS)表达。相比之下,细胞不会附着在未涂层的裸 316L SS 网眼上,也不会在裸网眼附近培养时保持存活。因此,改善的表面性能和生物相容性的结合意味着 GO 涂层可用于克服裸金属 316L SS 植入物表面的相关限制,特别是 SS 神经电极。此外,用于制造基于 GO 的保护性涂层的程序可以应用于许多其他需要开发这种保护性薄膜的植入物。

相似文献

1
Attenuation of the in vitro neurotoxicity of 316L SS by graphene oxide surface coating.
Mater Sci Eng C Mater Biol Appl. 2017 Apr 1;73:788-797. doi: 10.1016/j.msec.2016.12.123. Epub 2017 Jan 7.
2
Hard CrO coatings on SS316L substrates prepared by reactive magnetron sputtering technique: a potential candidate for orthopedic implants.
Environ Sci Pollut Res Int. 2021 May;28(20):25146-25154. doi: 10.1007/s11356-019-05006-3. Epub 2019 Apr 17.
6
Novel hydroxyapatite/graphene oxide/collagen bioactive composite coating on Ti16Nb alloys by electrodeposition.
Mater Sci Eng C Mater Biol Appl. 2019 Aug;101:292-305. doi: 10.1016/j.msec.2019.03.078. Epub 2019 Mar 23.
10
Electropolymerized hydrophilic coating on stainless steel for biomedical applications.
Colloids Surf B Biointerfaces. 2018 Jul 1;167:499-508. doi: 10.1016/j.colsurfb.2018.04.052. Epub 2018 Apr 27.

引用本文的文献

1
Cytocompatibility Study of Stainless Steel 316l Against Differentiated SH-SY5Y Cells.
Biomimetics (Basel). 2025 Mar 11;10(3):169. doi: 10.3390/biomimetics10030169.
2
Bio-inspired nanocomposite coatings on orthodontic archwires with corrosion resistant and antibacterial properties.
Front Bioeng Biotechnol. 2023 Oct 20;11:1272527. doi: 10.3389/fbioe.2023.1272527. eCollection 2023.
4
Surface Area of Graphene Governs Its Neurotoxicity.
ACS Biomater Sci Eng. 2023 Jun 12;9(6):3297-3305. doi: 10.1021/acsbiomaterials.3c00104. Epub 2023 May 18.
5
Magnetic and Biocompatible Polyurethane Nanofiber Biomaterial for Tissue Engineering.
Tissue Eng Part A. 2023 Aug;29(15-16):413-423. doi: 10.1089/ten.TEA.2022.0224. Epub 2023 May 30.
6
A Visible Light-Cross-Linkable, Fibrin-Gelatin-Based Bioprinted Construct with Human Cardiomyocytes and Fibroblasts.
ACS Biomater Sci Eng. 2019 Sep 9;5(9):4551-4563. doi: 10.1021/acsbiomaterials.9b00505. Epub 2019 Aug 1.
7
Tissue Response to Neural Implants: The Use of Model Systems Toward New Design Solutions of Implantable Microelectrodes.
Front Neurosci. 2019 Jul 5;13:689. doi: 10.3389/fnins.2019.00689. eCollection 2019.
8
The Efficacy of Graphene Foams for Culturing Mesenchymal Stem Cells and Their Differentiation into Dopaminergic Neurons.
Stem Cells Int. 2018 Jun 3;2018:3410168. doi: 10.1155/2018/3410168. eCollection 2018.
9
The applicability of furfuryl-gelatin as a novel bioink for tissue engineering applications.
J Biomed Mater Res B Appl Biomater. 2019 Feb;107(2):314-323. doi: 10.1002/jbm.b.34123. Epub 2018 Apr 15.

本文引用的文献

2
The synergistic effect of a hybrid graphene oxide-chitosan system and biomimetic mineralization on osteoblast functions.
Biomater Sci. 2014 Feb 23;2(2):264-274. doi: 10.1039/c3bm60192g. Epub 2013 Oct 30.
3
Differentiation of human neural stem cells into neural networks on graphene nanogrids.
J Mater Chem B. 2013 Dec 7;1(45):6291-6301. doi: 10.1039/c3tb21085e. Epub 2013 Oct 17.
6
Green Approach for the Effective Reduction of Graphene Oxide Using Salvadora persica L. Root (Miswak) Extract.
Nanoscale Res Lett. 2015 Dec;10(1):987. doi: 10.1186/s11671-015-0987-z. Epub 2015 Jul 3.
7
Arterial levels of oxygen stimulate intimal hyperplasia in human saphenous veins via a ROS-dependent mechanism.
PLoS One. 2015 Mar 23;10(3):e0120301. doi: 10.1371/journal.pone.0120301. eCollection 2015.
8
Impermeable barrier films and protective coatings based on reduced graphene oxide.
Nat Commun. 2014 Sep 11;5:4843. doi: 10.1038/ncomms5843.
9
Stiff substrates enhance cultured neuronal network activity.
Sci Rep. 2014 Aug 28;4:6215. doi: 10.1038/srep06215.
10
Reduced graphene oxide growth on 316L stainless steel for medical applications.
Nanoscale. 2014 Aug 7;6(15):8664-70. doi: 10.1039/c4nr02512a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验