Suppr超能文献

OncoSimulR:无性繁殖群体中具有任意上位性和突变基因的遗传模拟。

OncoSimulR: genetic simulation with arbitrary epistasis and mutator genes in asexual populations.

作者信息

Diaz-Uriarte Ramon

机构信息

Department of Biochemistry, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas 'Alberto Sols' (UAM-CSIC), Madrid, Spain.

出版信息

Bioinformatics. 2017 Jun 15;33(12):1898-1899. doi: 10.1093/bioinformatics/btx077.

Abstract

SUMMARY

OncoSimulR implements forward-time genetic simulations of biallelic loci in asexual populations with special focus on cancer progression. Fitness can be defined as an arbitrary function of genetic interactions between multiple genes or modules of genes, including epistasis, restrictions in the order of accumulation of mutations, and order effects. Mutation rates can differ among genes, and can be affected by (anti)mutator genes. Also available are sampling from simulations (including single-cell sampling), plotting the genealogical relationships of clones and generating and plotting fitness landscapes.

AVAILABILITY AND IMPLEMENTATION

Implemented in R and C ++, freely available from BioConductor for Linux, Mac and Windows under the GNU GPL license. Version 2.5.9 or higher available from: http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html . GitHub repository at: https://github.com/rdiaz02/OncoSimul.

CONTACT

ramon.diaz@iib.uam.es.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

OncoSimulR对无性种群中的双等位基因座进行正向时间遗传模拟,特别关注癌症进展。适应度可以定义为多个基因或基因模块之间遗传相互作用的任意函数,包括上位性、突变积累顺序的限制以及顺序效应。基因间的突变率可能不同,并且可能受(抗)突变基因影响。还提供模拟抽样(包括单细胞抽样)、绘制克隆的谱系关系以及生成和绘制适应度景观。

可用性与实现

用R和C++实现,可在GNU GPL许可下从BioConductor免费获取,适用于Linux、Mac和Windows。版本2.5.9或更高版本可从以下网址获取:http://www.bioconductor.org/packages/devel/bioc/html/OncoSimulR.html 。GitHub仓库位于:https://github.com/rdiaz02/OncoSimul

联系方式

ramon.diaz@iib.uam.es

补充信息

补充数据可在《生物信息学》在线获取。

相似文献

引用本文的文献

5
Estimating the predictability of cancer evolution.估算癌症演化的可预测性。
Bioinformatics. 2019 Jul 15;35(14):i389-i397. doi: 10.1093/bioinformatics/btz332.
6
Every which way? On predicting tumor evolution using cancer progression models.条条大路通罗马?基于肿瘤进展模型预测肿瘤演化。
PLoS Comput Biol. 2019 Aug 2;15(8):e1007246. doi: 10.1371/journal.pcbi.1007246. eCollection 2019 Aug.

本文引用的文献

3
4
Cancer evolution: mathematical models and computational inference.癌症演变:数学模型与计算推断
Syst Biol. 2015 Jan;64(1):e1-25. doi: 10.1093/sysbio/syu081. Epub 2014 Oct 7.
7
Impact of deleterious passenger mutations on cancer progression.有害乘客突变对癌症进展的影响。
Proc Natl Acad Sci U S A. 2013 Feb 19;110(8):2910-5. doi: 10.1073/pnas.1213968110. Epub 2013 Feb 6.
8
Predictability of evolution depends nonmonotonically on population size.进化的可预测性取决于种群大小,而非单调变化。
Proc Natl Acad Sci U S A. 2013 Jan 8;110(2):571-6. doi: 10.1073/pnas.1213613110. Epub 2012 Dec 24.
10
Fast stochastic algorithm for simulating evolutionary population dynamics.快速随机进化群体动力学模拟算法。
Bioinformatics. 2012 May 1;28(9):1230-8. doi: 10.1093/bioinformatics/bts130. Epub 2012 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验