Reis Sara, Gazinska Patrycja, Hipwell John H, Mertzanidou Thomy, Naidoo Kalnisha, Williams Norman, Pinder Sarah, Hawkes David J
IEEE Trans Biomed Eng. 2017 Oct;64(10):2344-2352. doi: 10.1109/TBME.2017.2665602. Epub 2017 Feb 7.
The tumor microenvironment plays a crucial role in regulating tumor progression by a number of different mechanisms, in particular, the remodeling of collagen fibers in tumor-associated stroma, which has been reported to be related to patient survival. The underlying motivation of this work is that remodeling of collagen fibers gives rise to observable patterns in hematoxylin and eosin (H&E) stained slides from clinical cases of invasive breast carcinoma that the pathologist can label as mature or immature stroma. The aim of this paper is to categorise and automatically classify stromal regions according to their maturity and show that this classification agrees with that of skilled observers, hence providing a repeatable and quantitative measure for prognostic studies.
We use multiscale basic image features and local binary patterns, in combination with a random decision trees classifier for classification of breast cancer stroma regions-of-interest (ROI).
We present results from a cohort of 55 patients with analysis of 169 ROI. Our multiscale approach achieved a classification accuracy of 84%.
This work demonstrates the ability of texture-based image analysis to differentiate breast cancer stroma maturity in clinically acquired H&E-stained slides at least as well as skilled observers.
肿瘤微环境通过多种不同机制在调节肿瘤进展中发挥关键作用,特别是肿瘤相关基质中胶原纤维的重塑,据报道这与患者生存率相关。这项工作的潜在动机是,胶原纤维的重塑会在浸润性乳腺癌临床病例的苏木精和伊红(H&E)染色切片中产生可观察到的模式,病理学家可将其标记为成熟或不成熟基质。本文的目的是根据基质的成熟度对其区域进行分类并自动分类,并表明这种分类与专业观察者的分类一致,从而为预后研究提供一种可重复且定量的测量方法。
我们使用多尺度基本图像特征和局部二值模式,并结合随机决策树分类器对乳腺癌基质感兴趣区域(ROI)进行分类。
我们展示了对55名患者的队列分析结果,共分析了169个ROI。我们的多尺度方法实现了84%的分类准确率。
这项工作证明了基于纹理的图像分析能够在临床获取的H&E染色切片中区分乳腺癌基质的成熟度,至少与专业观察者的能力相当。