Suppr超能文献

用于脊椎不规则性的基于内容的医学图像检索系统的设计与开发。

Design and development of a content-based medical image retrieval system for spine vertebrae irregularity.

作者信息

Mustapha Aouache, Hussain Aini, Samad Salina Abdul, Zulkifley Mohd Asyraf, Diyana Wan Zaki Wan Mimi, Hamid Hamzaini Abdul

机构信息

Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Univeristi Kebangsaan Malaysia, Bangi, 43600 Selangor DE, Malaysia.

出版信息

Biomed Eng Online. 2015 Jan 16;14:6. doi: 10.1186/1475-925X-14-6.

Abstract

BACKGROUND

Content-based medical image retrieval (CBMIR) system enables medical practitioners to perform fast diagnosis through quantitative assessment of the visual information of various modalities.

METHODS

In this paper, a more robust CBMIR system that deals with both cervical and lumbar vertebrae irregularity is afforded. It comprises three main phases, namely modelling, indexing and retrieval of the vertebrae image. The main tasks in the modelling phase are to improve and enhance the visibility of the x-ray image for better segmentation results using active shape model (ASM). The segmented vertebral fractures are then characterized in the indexing phase using region-based fracture characterization (RB-FC) and contour-based fracture characterization (CB-FC). Upon a query, the characterized features are compared to the query image. Effectiveness of the retrieval phase is determined by its retrieval, thus, we propose an integration of the predictor model based cross validation neural network (PMCVNN) and similarity matching (SM) in this stage. The PMCVNN task is to identify the correct vertebral irregularity class through classification allowing the SM process to be more efficient. Retrieval performance between the proposed and the standard retrieval architectures are then compared using retrieval precision (Pr@M) and average group score (AGS) measures.

RESULTS

Experimental results show that the new integrated retrieval architecture performs better than those of the standard CBMIR architecture with retrieval results of cervical (AGS > 87%) and lumbar (AGS > 82%) datasets.

CONCLUSIONS

The proposed CBMIR architecture shows encouraging results with high Pr@M accuracy. As a result, images from the same visualization class are returned for further used by the medical personnel.

摘要

背景

基于内容的医学图像检索(CBMIR)系统使医学从业者能够通过对各种模态的视觉信息进行定量评估来快速进行诊断。

方法

本文提供了一种更强大的CBMIR系统,该系统可处理颈椎和腰椎的不规则情况。它包括三个主要阶段,即椎骨图像的建模、索引和检索。建模阶段的主要任务是使用主动形状模型(ASM)来改善和增强X射线图像的可视性,以获得更好的分割结果。然后在索引阶段使用基于区域的骨折特征描述(RB-FC)和基于轮廓的骨折特征描述(CB-FC)对分割出的椎骨骨折进行特征描述。在查询时,将特征化的特征与查询图像进行比较。检索阶段的有效性由其检索结果决定,因此,我们在该阶段提出了基于预测模型的交叉验证神经网络(PMCVNN)和相似性匹配(SM)的集成。PMCVNN的任务是通过分类识别正确的椎骨不规则类别,从而使SM过程更高效。然后使用检索精度(Pr@M)和平均组分数(AGS)指标比较所提出的检索架构与标准检索架构之间的检索性能。

结果

实验结果表明,新的集成检索架构比标准CBMIR架构表现更好,颈椎(AGS > 87%)和腰椎(AGS > 82%)数据集的检索结果更佳。

结论

所提出的CBMIR架构显示出令人鼓舞的结果,具有较高的Pr@M准确率。因此,来自同一可视化类别的图像被返回以供医务人员进一步使用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/49ea/4349791/76092d39c4d9/12938_2014_941_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验