Suppr超能文献

石英晶体微天平-耗散与反射模式局域表面等离子体共振传感器在生物大分子相互作用分析中的集成。

Integration of Quartz Crystal Microbalance-Dissipation and Reflection-Mode Localized Surface Plasmon Resonance Sensors for Biomacromolecular Interaction Analysis.

机构信息

School of Materials Science and Engineering, Nanyang Technological University , 50 Nanyang Avenue, Singapore 639798.

School of Chemical and Biomedical Engineering, Nanyang Technological University , 62 Nanyang Drive, Singapore 637459.

出版信息

Anal Chem. 2016 Dec 20;88(24):12524-12531. doi: 10.1021/acs.analchem.6b04303. Epub 2016 Dec 8.

Abstract

The combination of label-free, surface-sensitive measurement techniques based on different physical principles enables detailed characterization of biomacromolecular interactions at solid-liquid interfaces. To date, most combined measurement systems have involved experimental techniques with similar probing volumes, whereas the potential of utilizing techniques with different surface sensitivities remains largely unexplored, especially for data interpretation. Herein, we report a combined measurement approach that integrates a conventional quartz crystal microbalance-dissipation (QCM-D) setup with a reflection-mode localized surface plasmon (LSPR) sensor. Using this platform, we investigate vesicle adsorption on a titanium oxide-coated sensing substrate along with the amphipathic, α-helical (AH) peptide-induced structural transformation of surface-adsorbed lipid vesicles into a supported lipid bilayer (SLB) as a model biomacromolecular interaction. While the QCM-D and LSPR signals both detected mass uptake arising from vesicle adsorption, tracking the AH peptide-induced structural transformation revealed more complex measurement responses based on the different surface sensitivities of the two techniques. In particular, the LSPR signal recorded an increase in optical mass near the sensor surface which indicated SLB formation, whereas the QCM-D signals detected a significant loss in net acoustic mass due to excess lipid and coupled solvent leaving the probing volume. Importantly, these measurement capabilities allowed us to temporally distinguish the process of SLB formation at the sensor surface from the overall structural transformation process. Looking forward, these label-free measurement capabilities to simultaneously probe adsorbates at multiple length scales will provide new insights into complex biomacromolecular interactions.

摘要

基于不同物理原理的无标记、表面敏感测量技术的组合,使我们能够详细表征固液界面上的生物大分子相互作用。迄今为止,大多数组合测量系统都涉及具有相似探测体积的实验技术,而利用具有不同表面灵敏度的技术的潜力在很大程度上仍未得到探索,特别是在数据解释方面。在此,我们报告了一种组合测量方法,该方法将传统的石英晶体微天平耗散(QCM-D)装置与反射模式局部表面等离子体(LSPR)传感器集成在一起。使用该平台,我们研究了囊泡在氧化钛涂层传感基底上的吸附以及两亲性、α-螺旋(AH)肽诱导的表面吸附脂质囊泡向支撑脂质双层(SLB)的结构转变,作为生物大分子相互作用的模型。虽然 QCM-D 和 LSPR 信号都检测到了由于囊泡吸附引起的质量增加,但跟踪 AH 肽诱导的结构转变揭示了基于两种技术不同表面灵敏度的更复杂的测量响应。特别是,LSPR 信号记录了传感器表面附近光质量的增加,这表明 SLB 的形成,而 QCM-D 信号检测到由于多余的脂质和耦合溶剂离开探测体积,净声质量的显著损失。重要的是,这些测量能力使我们能够在时间上区分传感器表面上 SLB 形成的过程和整体结构转变过程。展望未来,这些无需标记的测量能力可以同时在多个长度尺度上探测吸附物,将为复杂的生物大分子相互作用提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验