Meng Huicui, Matthan Nirupa R, Ausman Lynne M, Lichtenstein Alice H
Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA.
Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA
Am J Clin Nutr. 2017 Apr;105(4):842-853. doi: 10.3945/ajcn.116.144162. Epub 2017 Feb 15.
The potential confounding effect of different amounts and proportions of macronutrients across eating patterns on meal or dietary glycemic index (GI) and glycemic load (GL) value determinations has remained partially unaddressed. The study aimed to determine the effects of different amounts of macronutrients and fiber on measured meal GI and GL values. Four studies were conducted during which participants [ = 20-22; women: 50%; age: 50-80 y; body mass index (in kg/m): 25-30)] received food challenges containing different amounts of the variable nutrient in a random order. Added to the standard 50 g available carbohydrate from white bread was 12.5, 25, or 50 g carbohydrate; 12.5, 25, or 50 g protein; and 5.6, 11.1, or 22.2 g fat from rice cereal, tuna, and unsalted butter, respectively, and 4.8 or 9.6 g fiber from oat cereal. Arterialized venous blood was sampled for 2 h, and measured meal GI and GL and insulin index (II) values were calculated by using the incremental area under the curve (AUC) method. Adding carbohydrate to the standard white-bread challenge increased glucose AUC ( < 0.0001), measured meal GI ( = 0.0066), and mean GL ( < 0.0001). Adding protein (50 g only) decreased glucose AUC ( = 0.0026), measured meal GI ( = 0.0139), and meal GL ( = 0.0140). Adding fat or fiber had no significant effect on these variables. Adding carbohydrate (50 g), protein (50 g), and fat (11.1 g) increased the insulin AUC or II; fiber had no effect. These data indicate that uncertainty in the determination of meal GI and GL values is introduced when carbohydrate-containing foods are consumed concurrently with protein (equal amount of carbohydrate challenge) but not with carbohydrate-, fat-, or fiber-containing foods. Future studies are needed to evaluate whether this uncertainty also influences the prediction of average dietary GI and GL values for eating patterns. This trial was registered at clinicaltrials.gov as NCT01023646.
不同饮食模式中常量营养素的不同含量和比例对餐食或膳食血糖指数(GI)及血糖负荷(GL)值测定可能产生的混杂效应,仍有部分未得到解决。本研究旨在确定不同含量的常量营养素和纤维对实测餐食GI和GL值的影响。共进行了四项研究,期间参与者[ = 20 - 22;女性:50%;年龄:50 - 80岁;体重指数(kg/m):25 - 30]以随机顺序接受包含不同含量可变营养素的食物挑战。在由白面包提供的标准50克可利用碳水化合物基础上,分别添加了12.5、25或50克碳水化合物;12.5、25或50克蛋白质;以及分别来自米粉、金枪鱼和无盐黄油的5.6、11.1或22.2克脂肪,还有来自燕麦片的4.8或9.6克纤维。采集动脉化静脉血2小时,并采用曲线下增量面积(AUC)法计算实测餐食GI、GL和胰岛素指数(II)值。在标准白面包挑战中添加碳水化合物会增加葡萄糖AUC(< 0.0001)、实测餐食GI( = 0.0066)和平均GL(< 0.0001)。添加蛋白质(仅50克)会降低葡萄糖AUC( = 0.0026)、实测餐食GI( = 0.0139)和餐食GL( = 0.0140)。添加脂肪或纤维对这些变量无显著影响。添加碳水化合物(50克)、蛋白质(50克)和脂肪(11.1克)会增加胰岛素AUC或II;纤维无影响。这些数据表明,当含碳水化合物食物与蛋白质同时食用(碳水化合物挑战量相等)时,会在餐食GI和GL值的测定中引入不确定性,但与含碳水化合物、脂肪或纤维的食物同时食用时则不会。未来需要开展研究,以评估这种不确定性是否也会影响对不同饮食模式的平均膳食GI和GL值的预测。本试验已在clinicaltrials.gov上注册,注册号为NCT01023646。