Laboratory of Pediatric Infectious Diseases, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen 6525 GA, The Netherlands.
Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen 6525 GA, The Netherlands.
Sci Rep. 2017 Feb 16;7:42808. doi: 10.1038/srep42808.
Advances in genome sequencing technologies and genome-wide association studies (GWAS) have provided unprecedented insights into the molecular basis of microbial phenotypes and enabled the identification of the underlying genetic variants in real populations. However, utilization of genome sequencing in clinical phenotyping of bacteria is challenging due to the lack of reliable and accurate approaches. Here, we report a method for predicting microbial resistance patterns using genome sequencing data. We analyzed whole genome sequences of 1,680 Streptococcus pneumoniae isolates from four independent populations using GWAS and identified probable hotspots of genetic variation which correlate with phenotypes of resistance to essential classes of antibiotics. With the premise that accumulation of putative resistance-conferring SNPs, potentially in combination with specific resistance genes, precedes full resistance, we retrogressively surveyed the hotspot loci and quantified the number of SNPs and/or genes, which if accumulated would confer full resistance to an otherwise susceptible strain. We name this approach the 'distance to resistance'. It can be used to identify the creep towards complete antibiotics resistance in bacteria using genome sequencing. This approach serves as a basis for the development of future sequencing-based methods for predicting resistance profiles of bacterial strains in hospital microbiology and public health settings.
基因组测序技术和全基因组关联研究(GWAS)的进展为微生物表型的分子基础提供了前所未有的见解,并能够在真实人群中鉴定潜在的遗传变异。然而,由于缺乏可靠和准确的方法,基因组测序在细菌临床表型中的应用具有挑战性。在这里,我们报告了一种使用基因组测序数据预测微生物耐药模式的方法。我们使用 GWAS 分析了来自四个独立人群的 1680 株肺炎链球菌分离株的全基因组序列,并鉴定了与抗生素耐药表型相关的遗传变异的可能热点。基于假定的耐药赋予 SNP 的积累,可能与特定的耐药基因相结合,先于完全耐药,我们回溯性地调查了热点基因座,并量化了如果积累,将赋予对原本敏感的菌株完全耐药的 SNP 和/或基因的数量。我们将这种方法命名为“耐药距离”。它可用于使用基因组测序来识别细菌对完全抗生素耐药性的逐渐发展。这种方法为未来在医院微生物学和公共卫生环境中开发基于测序的方法预测细菌菌株的耐药谱奠定了基础。