Corrado Cesare, Whitaker John, Chubb Henry, Williams Steven, Wright Matthew, Gill Jaswinder, ONeill Mark D, Niederer Steven A
Department of Biomedical Engineering, King's College London, London, U.K.
Department of Biomedical EngineeringKing's College London.
IEEE Trans Biomed Eng. 2017 Apr;64(4):735-742. doi: 10.1109/TBME.2016.2574619. Epub 2016 May 30.
Computational models represent a novel framework for understanding the mechanisms behind atrial fibrillation (AF) and offer a pathway for personalizing and optimizing treatment. The characterization of local electrophysiological properties across the atria during procedures remains a challenge. The aim of this work is to characterize the regional properties of the human atrium from multielectrode catheter measurements.
We propose a novel method that characterizes regional electrophysiology properties by fitting parameters of an ionic model to conduction velocity and effective refractory period restitution curves obtained by a s-s pacing protocol applied through a multielectrode catheter. Using an in-silico dataset we demonstrate that the fitting method can constrain parameters with a mean error of 21.9 ± 16.1% and can replicate conduction velocity and effective refractory curves not used in the original fitting with a relative error of 4.4 ± 6.9%.
We demonstrate this parameter estimation approach on five clinical datasets recorded from AF patients. Recordings and parametrization took approx. 5 and 6 min, respectively. Models fitted restitution curves with an error of ~ 5% and identify a unique parameter set. Tissue properties were predicted using a two-dimensional atrial tissue sheet model. Spiral wave stability in each case was predicted using tissue simulations, identifying distinct stable (2/5), meandering and breaking up (2/5), and unstable self-terminating (1/5) spiral tip patterns for different cases.
We have developed and demonstrated a robust and rapid approach for personalizing local ionic models from a clinically tractable.
计算模型是理解心房颤动(AF)背后机制的新框架,并为个性化和优化治疗提供了途径。在手术过程中对整个心房局部电生理特性进行表征仍然是一项挑战。这项工作的目的是通过多电极导管测量来表征人体心房的区域特性。
我们提出了一种新方法,通过将离子模型的参数拟合到通过多电极导管应用的s-s起搏协议获得的传导速度和有效不应期恢复曲线来表征区域电生理特性。使用计算机模拟数据集,我们证明该拟合方法可以将参数约束在平均误差为21.9±16.1%的范围内,并且可以以4.4±6.9%的相对误差复制原始拟合中未使用的传导速度和有效不应期曲线。
我们在从AF患者记录的五个临床数据集上展示了这种参数估计方法。记录和参数化分别花费约5分钟和6分钟。模型拟合恢复曲线的误差约为5%,并识别出一组唯一的参数。使用二维心房组织片模型预测组织特性。在每种情况下,使用组织模拟预测螺旋波稳定性,为不同情况识别出不同的稳定(2/5)、蜿蜒和破裂(2/5)以及不稳定的自终止(1/5)螺旋尖端模式。
我们已经开发并展示了一种强大而快速的方法,可从临床易处理的数据中个性化局部离子模型。