Suppr超能文献

低秩递归神经网络中的随机活动。

Stochastic activity in low-rank recurrent neural networks.

作者信息

Mastrogiuseppe Francesca, Carmona Joana, Machens Christian K

机构信息

Champalimaud Foundation, Neuroscience Research Programme, Lisbon (Portugal).

出版信息

bioRxiv. 2025 Jul 11:2025.04.22.649933. doi: 10.1101/2025.04.22.649933.

Abstract

The geometrical and statistical properties of brain activity depend on the way neurons connect to form recurrent circuits. However, the link between connectivity structure and emergent activity remains incompletely understood. We investigate this relationship in recurrent neural networks with additive stochastic inputs. We assume that the synaptic connectivity can be expressed in a low-rank form, parameterized by a handful of connectivity vectors, and examine how the geometry of emergent activity relates to these vectors. Our findings reveal that this relationship critically depends on the dimensionality of the external stochastic inputs. When inputs are low-dimensional, activity remains low-dimensional, and recurrent dynamics influence it within a subspace spanned by a subset of the connectivity vectors, with dimensionality equal to the rank of the connectivity matrix. In contrast, when inputs are high-dimensional, activity also becomes potentially high-dimensional. The contribution of recurrent dynamics is apparent within a subspace spanned by the totality of the connectivity vectors, with dimensionality equal to twice the rank of the connectivity matrix. Applying our formalism to excitatory-inhibitory networks, we discuss how the input configuration also plays a crucial role in determining the amount of amplification generated by non-normal dynamics. Our work provides a foundation for studying activity in structured brain circuits under realistic noise conditions, and offers a framework for interpreting stochastic models inferred from experimental data.

摘要

大脑活动的几何和统计特性取决于神经元连接形成循环回路的方式。然而,连接结构与涌现活动之间的联系仍未完全被理解。我们在具有加性随机输入的循环神经网络中研究这种关系。我们假设突触连接性可以用低秩形式表示,由少数几个连接向量参数化,并研究涌现活动的几何结构如何与这些向量相关。我们的研究结果表明,这种关系关键取决于外部随机输入的维度。当输入是低维时,活动保持低维,并且循环动力学在由连接向量的一个子集所跨越的子空间内影响它,其维度等于连接矩阵的秩。相反,当输入是高维时,活动也可能变为高维。循环动力学的贡献在由所有连接向量所跨越的子空间内很明显,其维度等于连接矩阵秩的两倍。将我们的形式体系应用于兴奋性 - 抑制性网络,我们讨论了输入配置在确定非正态动力学产生的放大量方面如何也起着关键作用。我们的工作为在现实噪声条件下研究结构化脑回路中的活动提供了基础,并为解释从实验数据推断出的随机模型提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b68/12265518/2180875d61c5/nihpp-2025.04.22.649933v3-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验