Cheng Li-Shan, Charng Ching-Che, Chen Ruei-Huang, Feng Kuan-Lin, Chiang Ann-Shyn, Lo Chung-Chuan, Lee Ting-Kuo
Department of Physics, National Tsing Hua University, Hsinchu 300043, Taiwan.
Institute of Systems Neuroscience and Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.
Sci Adv. 2025 May 30;11(22):eadq9893. doi: 10.1126/sciadv.adq9893.
In , olfactory encoding in the mushroom body (MB) involves thousands of Kenyon cells (KCs) processing inputs from hundreds of projection neurons (PNs). Recent data challenge the notion of random PN-to-KC connectivity, revealing preferential connections between food-related PNs and specific KCs. Our study further uncovers a broader picture-an L-shaped hybrid network, supported by spatial patterning: Food-related PNs diverge across KC classes, whereas pheromone-sensitive PNs converge on γ KCs. α/β KCs specialize in food odors, whereas γ KCs integrate diverse inputs. Such spatial arrangement extends further to the antennal lobe (AL) and lateral horn (LH), shaping a systematic olfactory landscape. Moreover, our functional validations align with computational predictions of KC odor encoding based on the hybrid connectivity, correlating PN-KC activity with behavioral preferences. In addition, our simulations showcase the network's augmented sensitivity and precise discrimination abilities, underscoring the computational benefits of this hybrid architecture in olfactory processing.
在蘑菇体(MB)中,嗅觉编码涉及数千个肯扬细胞(KC)处理来自数百个投射神经元(PN)的输入。最近的数据对随机PN到KC连接的概念提出了挑战,揭示了与食物相关的PN和特定KC之间的优先连接。我们的研究进一步揭示了一幅更广阔的图景——一个由空间模式支持的L形混合网络:与食物相关的PN在不同KC类别中发散,而对信息素敏感的PN汇聚于γ KC。α/β KC专门处理食物气味,而γ KC整合多种输入。这种空间排列进一步延伸至触角叶(AL)和侧角(LH),塑造了一个系统的嗅觉格局。此外,我们的功能验证与基于混合连接的KC气味编码的计算预测一致,将PN-KC活动与行为偏好相关联。此外,我们的模拟展示了该网络增强的敏感性和精确的辨别能力,强调了这种混合架构在嗅觉处理中的计算优势。