Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States.
Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory , 2575 Sand Hill Road, Menlo Park, California 94025, United States.
Nano Lett. 2017 Mar 8;17(3):1741-1747. doi: 10.1021/acs.nanolett.6b05062. Epub 2017 Feb 21.
Intercalation of exotic atoms or molecules into the layered materials remains an extensively investigated subject in current physics and chemistry. However, traditionally melt-growth and chemical interaction strategies are either limited by insufficiency of intercalant concentrations or destitute of accurate controllability. Here, we have developed a general electrochemical intercalation method to efficaciously regulate the concentration of zerovalent copper atoms into layered BiSe, followed by comprehensive experimental characterization and analyses. Up to 57% copper atoms (CuBiSe) can be intercalated with no disruption to the host lattice. Meanwhile the unconventional resistance dip accompanied by a hysteresis loop below 40 K, as well as the emergence of new Raman peak in CuBiSe, is a distinct manifestation of the interplay between intercalated Cu atoms with BiSe host. Our work demonstrates a new methodology to study fundamentally new and unexpected physical behaviors in intercalated metastable materials.
将外来原子或分子插入层状材料中仍然是当前物理学和化学中广泛研究的课题。然而,传统的熔融生长和化学相互作用策略要么受到插层剂浓度不足的限制,要么缺乏精确的可控性。在这里,我们开发了一种通用的电化学插层方法,有效地调节零价铜原子进入层状 BiSe 中的浓度,随后进行了全面的实验表征和分析。多达 57%的铜原子(CuBiSe)可以插入,而不会破坏主体晶格。同时,在 40 K 以下出现的非传统电阻下降以及新的 Raman 峰的出现,是插层 Cu 原子与 BiSe 主体相互作用的明显表现。我们的工作展示了一种新的方法来研究插层亚稳材料中全新的和意想不到的物理行为。