Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK.
Fakultät für Biologie, Chemie und Geowissenschaften, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
Nat Mater. 2017 May;16(5):551-557. doi: 10.1038/nmat4865. Epub 2017 Feb 20.
Interfaces play a crucial role in semiconductor devices, but in many device architectures they are nanostructured, disordered and buried away from the surface of the sample. Conventional optical, X-ray and photoelectron probes often fail to provide interface-specific information in such systems. Here we develop an all-optical time-resolved method to probe the local energetic landscape and electronic dynamics at such interfaces, based on the Stark effect caused by electron-hole pairs photo-generated across the interface. Using this method, we found that the electronically active sites at the polymer/fullerene interfaces in model bulk-heterojunction blends fall within the low-energy tail of the absorption spectrum. This suggests that these sites are highly ordered compared with the bulk of the polymer film, leading to large wavefunction delocalization and low site energies. We also detected a 100 fs migration of holes from higher- to lower-energy sites, consistent with these charges moving ballistically into more ordered polymer regions. This ultrafast charge motion may be key to separating electron-hole pairs into free charges against the Coulomb interaction.
界面在半导体器件中起着至关重要的作用,但在许多器件结构中,它们是纳米结构的、无序的,并且埋在样品表面之下。在这样的系统中,传统的光学、X 射线和光电子探针往往无法提供特定于界面的信息。在这里,我们开发了一种全光学的时间分辨方法,基于在界面处产生的电子-空穴对引起的斯塔克效应,来探测这种界面处的局部能量景观和电子动力学。使用这种方法,我们发现模型体异质结混合物中聚合物/富勒烯界面处的电子活性位点位于吸收光谱的低能尾部内。这表明与聚合物膜的大部分相比,这些位点具有高度有序性,导致波函数离域较大且位点能量较低。我们还检测到空穴从高能到低能位置的 100fs 迁移,这与这些电荷弹道进入更有序的聚合物区域一致。这种超快电荷运动可能是将电子-空穴对分离成自由电荷以对抗库仑相互作用的关键。