Suppr超能文献

参与甘蔗对生物胁迫反应的防御相关蛋白。

Defense-related proteins involved in sugarcane responses to biotic stress.

作者信息

Souza Thais P, Dias Renata O, Silva-Filho Marcio C

机构信息

Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, SP, Brazil.

出版信息

Genet Mol Biol. 2017;40(1 suppl 1):360-372. doi: 10.1590/1678-4685-GMB-2016-0057. Epub 2017 Feb 20.

Abstract

Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives.

摘要

甘蔗是世界上最重要的农作物之一。然而,病原体感染和食草动物侵袭会持续导致产量损失。植物通过诱导多种蛋白质的表达来应对病原体感染,例如葡聚糖酶、几丁质酶、甜蛋白、肽酶抑制剂、防御素、过氧化氢酶和糖蛋白。病程相关蛋白直接或间接参与植物防御,导致病原体死亡或诱导其他植物防御反应。其中几种蛋白质在甘蔗中由不同病原体或昆虫诱导产生,并具有抗真菌或杀虫活性。在本综述中,描述了甘蔗中与防御相关的蛋白质,及其推定的作用机制、病原体靶点和生物技术前景。

相似文献

1
Defense-related proteins involved in sugarcane responses to biotic stress.
Genet Mol Biol. 2017;40(1 suppl 1):360-372. doi: 10.1590/1678-4685-GMB-2016-0057. Epub 2017 Feb 20.
2
The Plant Ribosome-Inactivating Proteins Play Important Roles in Defense against Pathogens and Insect Pest Attacks.
Front Plant Sci. 2018 Feb 9;9:146. doi: 10.3389/fpls.2018.00146. eCollection 2018.
3
Immunocytochemistry of plant defense mechanisms induced upon microbial attack.
Microsc Res Tech. 1995 May 1;31(1):63-78. doi: 10.1002/jemt.1070310106.
4
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
6
Plant 'pathogenesis-related' proteins and their role in defense against pathogens.
Biochimie. 1993;75(8):687-706. doi: 10.1016/0300-9084(93)90100-7.
7
Sugarwin: a sugarcane insect-induced gene with antipathogenic activity.
Mol Plant Microbe Interact. 2012 May;25(5):613-24. doi: 10.1094/MPMI-09-11-0254.
8
Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants.
Crit Rev Biotechnol. 2010 Sep;30(3):231-41. doi: 10.3109/07388551.2010.487258.
9
The function of small RNAs in plant biotic stress response.
J Integr Plant Biol. 2016 Apr;58(4):312-27. doi: 10.1111/jipb.12463. Epub 2016 Feb 23.
10
CfPDIP1, a novel secreted protein of Colletotrichum falcatum, elicits defense responses in sugarcane and triggers hypersensitive response in tobacco.
Appl Microbiol Biotechnol. 2018 Jul;102(14):6001-6021. doi: 10.1007/s00253-018-9009-2. Epub 2018 May 4.

引用本文的文献

1
Fungal Diversity and Gibberellin Hormones Associated with Long Whips of Smut-Infected Sugarcanes.
Int J Mol Sci. 2024 Aug 22;25(16):9129. doi: 10.3390/ijms25169129.
2
Genetic Engineering for Enhancing Sugarcane Tolerance to Biotic and Abiotic Stresses.
Plants (Basel). 2024 Jun 24;13(13):1739. doi: 10.3390/plants13131739.
3
Anti-Aging Potential of a Novel Ingredient Derived from Sugarcane Straw Extract (SSE).
Int J Mol Sci. 2023 Dec 19;25(1):21. doi: 10.3390/ijms25010021.
4
NGS transcriptomic analysis uncovers the possible resistance mechanisms of olive to leaf spot infection.
Front Plant Sci. 2023 Jul 17;14:1219580. doi: 10.3389/fpls.2023.1219580. eCollection 2023.
5
Pathogenesis-Related Proteins (PRs) with Enzyme Activity Activating Plant Defense Responses.
Plants (Basel). 2023 Jun 5;12(11):2226. doi: 10.3390/plants12112226.
6
Decrypting the multi-functional biological activators and inducers of defense responses against biotic stresses in plants.
Heliyon. 2023 Feb 18;9(3):e13825. doi: 10.1016/j.heliyon.2023.e13825. eCollection 2023 Mar.
7
Sugarcane multitrophic interactions: Integrating belowground and aboveground organisms.
Genet Mol Biol. 2022 Dec 9;46(1 Suppl 1):e20220163. doi: 10.1590/1678-4685-GMB-2022-0163. eCollection 2022.
10
Divergence and conservation of defensins and lipid transfer proteins (LTPs) from sugarcane wild species and modern cultivar genomes.
Funct Integr Genomics. 2022 Apr;22(2):235-250. doi: 10.1007/s10142-022-00832-0. Epub 2022 Feb 23.

本文引用的文献

1
Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels.
Front Bioeng Biotechnol. 2015 Nov 17;3:182. doi: 10.3389/fbioe.2015.00182. eCollection 2015.
2
Disease Resistance Gene Analogs (RGAs) in Plants.
Int J Mol Sci. 2015 Aug 14;16(8):19248-90. doi: 10.3390/ijms160819248.
5
Genome-wide identification and characterization of cystatin family genes in rice (Oryza sativa L.).
Plant Cell Rep. 2015 Sep;34(9):1579-92. doi: 10.1007/s00299-015-1810-0. Epub 2015 May 26.
6
Transgenic sugarcane resistant to Sorghum mosaic virus based on coat protein gene silencing by RNA interference.
Biomed Res Int. 2015;2015:861907. doi: 10.1155/2015/861907. Epub 2015 Jan 22.
7
NLRs in plants.
Curr Opin Immunol. 2015 Feb;32:114-21. doi: 10.1016/j.coi.2015.01.014. Epub 2015 Feb 6.
8
Molecular profiling of systemic acquired resistance (SAR)-responsive transcripts in sugarcane challenged with Colletotrichum falcatum.
Appl Biochem Biotechnol. 2014 Dec;174(8):2839-50. doi: 10.1007/s12010-014-1230-6. Epub 2014 Sep 19.
9
A global view of transcriptome dynamics during Sporisorium scitamineum challenge in sugarcane by RNA-Seq.
PLoS One. 2014 Aug 29;9(8):e106476. doi: 10.1371/journal.pone.0106476. eCollection 2014.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验