Suppr超能文献

分离的元分析大脑网络有助于协调的情绪处理。

Dissociable meta-analytic brain networks contribute to coordinated emotional processing.

机构信息

Department of Physics, Florida International University, Miami, Florida.

Department of Psychology, Auburn University, Auburn, Alabama.

出版信息

Hum Brain Mapp. 2018 Jun;39(6):2514-2531. doi: 10.1002/hbm.24018. Epub 2018 Feb 26.

Abstract

Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks.

摘要

元分析技术在挖掘神经影像学文献方面继续产生影响,推动了我们对参与人类情感和认知的功能大脑网络的概念化。传统的关于影响情感加工的神经生物学基础的理论正在从区域向更基于网络的启发式框架转变。为了阐明与情感加工的不同方面相关的差异大脑网络参与,我们应用新兴的元分析聚类方法来分析 BrainMap 数据库中存档的大量情感神经影像学结果。具体来说,我们对情感处理领域的 1747 个实验的模型激活图进行了层次聚类,从而得出了五个元分析分组的实验,这些实验证明了全脑招募。对这些分组中的每一个进行的行为推理分析表明,支持以下方面的分离网络:(1)初级和联合视觉皮层内的视觉感知,(2)初级听觉皮层内的听觉感知,(3)岛叶、前扣带和皮质下区域内对情绪显著信息的注意,(4)内侧前额叶和后扣带皮质内对情绪事件的评价和预测,以及(5)杏仁核和梭状回内的情绪反应诱导。这些元分析结果与情感加工的当代心理模型一致,即感知刺激中的情绪显著信息与先前的经验相结合,产生主观的情感反应。本研究强调了使用新兴的元分析方法来为心理理论提供信息和扩展的效用,并表明情绪是大尺度大脑网络相互作用的最终结果。

相似文献

8
Neural architecture underlying classification of face perception paradigms.面部感知范式分类背后的神经结构。
Neuroimage. 2015 Oct 1;119:70-80. doi: 10.1016/j.neuroimage.2015.06.044. Epub 2015 Jun 18.

引用本文的文献

4
Brain imaging studies of emotional well-being: a scoping review.情绪健康的脑成像研究:一项范围综述
Front Psychol. 2024 Jan 5;14:1328523. doi: 10.3389/fpsyg.2023.1328523. eCollection 2023.

本文引用的文献

3
Connectivity-based parcellation: Critique and implications.基于连通性的脑区划分:批判与启示
Hum Brain Mapp. 2015 Dec;36(12):4771-92. doi: 10.1002/hbm.22933. Epub 2015 Sep 27.
4
Neural architecture underlying classification of face perception paradigms.面部感知范式分类背后的神经结构。
Neuroimage. 2015 Oct 1;119:70-80. doi: 10.1016/j.neuroimage.2015.06.044. Epub 2015 Jun 18.
6
Meta-analytic connectivity and behavioral parcellation of the human cerebellum.人类小脑的荟萃分析连接性与行为分区
Neuroimage. 2015 Aug 15;117:327-42. doi: 10.1016/j.neuroimage.2015.05.008. Epub 2015 May 19.
7
A Bayesian model of category-specific emotional brain responses.一种类别特异性情绪脑反应的贝叶斯模型。
PLoS Comput Biol. 2015 Apr 8;11(4):e1004066. doi: 10.1371/journal.pcbi.1004066. eCollection 2015 Apr.
9
Subspecialization in the human posterior medial cortex.人类后内侧皮质的亚专业化。
Neuroimage. 2015 Feb 1;106:55-71. doi: 10.1016/j.neuroimage.2014.11.009. Epub 2014 Nov 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验