Department of Physics, Florida International University, Miami, Florida.
Department of Psychology, Auburn University, Auburn, Alabama.
Hum Brain Mapp. 2018 Jun;39(6):2514-2531. doi: 10.1002/hbm.24018. Epub 2018 Feb 26.
Meta-analytic techniques for mining the neuroimaging literature continue to exert an impact on our conceptualization of functional brain networks contributing to human emotion and cognition. Traditional theories regarding the neurobiological substrates contributing to affective processing are shifting from regional- towards more network-based heuristic frameworks. To elucidate differential brain network involvement linked to distinct aspects of emotion processing, we applied an emergent meta-analytic clustering approach to the extensive body of affective neuroimaging results archived in the BrainMap database. Specifically, we performed hierarchical clustering on the modeled activation maps from 1,747 experiments in the affective processing domain, resulting in five meta-analytic groupings of experiments demonstrating whole-brain recruitment. Behavioral inference analyses conducted for each of these groupings suggested dissociable networks supporting: (1) visual perception within primary and associative visual cortices, (2) auditory perception within primary auditory cortices, (3) attention to emotionally salient information within insular, anterior cingulate, and subcortical regions, (4) appraisal and prediction of emotional events within medial prefrontal and posterior cingulate cortices, and (5) induction of emotional responses within amygdala and fusiform gyri. These meta-analytic outcomes are consistent with a contemporary psychological model of affective processing in which emotionally salient information from perceived stimuli are integrated with previous experiences to engender a subjective affective response. This study highlights the utility of using emergent meta-analytic methods to inform and extend psychological theories and suggests that emotions are manifest as the eventual consequence of interactions between large-scale brain networks.
元分析技术在挖掘神经影像学文献方面继续产生影响,推动了我们对参与人类情感和认知的功能大脑网络的概念化。传统的关于影响情感加工的神经生物学基础的理论正在从区域向更基于网络的启发式框架转变。为了阐明与情感加工的不同方面相关的差异大脑网络参与,我们应用新兴的元分析聚类方法来分析 BrainMap 数据库中存档的大量情感神经影像学结果。具体来说,我们对情感处理领域的 1747 个实验的模型激活图进行了层次聚类,从而得出了五个元分析分组的实验,这些实验证明了全脑招募。对这些分组中的每一个进行的行为推理分析表明,支持以下方面的分离网络:(1)初级和联合视觉皮层内的视觉感知,(2)初级听觉皮层内的听觉感知,(3)岛叶、前扣带和皮质下区域内对情绪显著信息的注意,(4)内侧前额叶和后扣带皮质内对情绪事件的评价和预测,以及(5)杏仁核和梭状回内的情绪反应诱导。这些元分析结果与情感加工的当代心理模型一致,即感知刺激中的情绪显著信息与先前的经验相结合,产生主观的情感反应。本研究强调了使用新兴的元分析方法来为心理理论提供信息和扩展的效用,并表明情绪是大尺度大脑网络相互作用的最终结果。