Suppr超能文献

蛋白质晶体结构中配体的构象能量范围:对准确理解的艰难探索。

Conformational energy range of ligands in protein crystal structures: The difficult quest for accurate understanding.

作者信息

Peach Megan L, Cachau Raul E, Nicklaus Marc C

机构信息

Basic Science Program, Chemical Biology Laboratory, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

Data Science and Information Technology Program, Advanced Biomedical Computing Center, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA.

出版信息

J Mol Recognit. 2017 Aug;30(8). doi: 10.1002/jmr.2618. Epub 2017 Feb 24.

Abstract

In this review, we address a fundamental question: What is the range of conformational energies seen in ligands in protein-ligand crystal structures? This value is important biophysically, for better understanding the protein-ligand binding process; and practically, for providing a parameter to be used in many computational drug design methods such as docking and pharmacophore searches. We synthesize a selection of previously reported conflicting results from computational studies of this issue and conclude that high ligand conformational energies really are present in some crystal structures. The main source of disagreement between different analyses appears to be due to divergent treatments of electrostatics and solvation. At the same time, however, for many ligands, a high conformational energy is in error, due to either crystal structure inaccuracies or incorrect determination of the reference state. Aside from simple chemistry mistakes, we argue that crystal structure error may mainly be because of the heuristic weighting of ligand stereochemical restraints relative to the fit of the structure to the electron density. This problem cannot be fixed with improvements to electron density fitting or with simple ligand geometry checks, though better metrics are needed for evaluating ligand and binding site chemistry in addition to geometry during structure refinement. The ultimate solution for accurately determining ligand conformational energies lies in ultrahigh-resolution crystal structures that can be refined without restraints.

摘要

在本综述中,我们探讨一个基本问题:在蛋白质-配体晶体结构中,配体所见的构象能范围是多少?该值在生物物理学上很重要,有助于更好地理解蛋白质-配体结合过程;在实际应用中,可为对接和药效团搜索等多种计算药物设计方法提供一个参数。我们综合了此前关于此问题的计算研究中一些相互矛盾的结果,并得出结论:在某些晶体结构中确实存在高配体构象能。不同分析之间存在分歧的主要根源似乎在于对静电作用和溶剂化的不同处理方式。然而,与此同时,对于许多配体而言,由于晶体结构不准确或参考状态的确定有误,高配象能是错误的。除了简单的化学错误外,我们认为晶体结构错误可能主要是由于相对于结构与电子密度的拟合,对配体立体化学限制进行了启发式加权。尽管在结构精修过程中,除了几何结构外,还需要更好的指标来评估配体和结合位点的化学性质,但这个问题无法通过改进电子密度拟合或简单的配体几何结构检查来解决。准确确定配体构象能的最终解决方案在于无需限制即可精修的超高分辨率晶体结构。

相似文献

2
FlexE: efficient molecular docking considering protein structure variations.
J Mol Biol. 2001 Apr 27;308(2):377-95. doi: 10.1006/jmbi.2001.4551.
3
Energy penalties enhance flexible receptor docking in a model cavity.
Proc Natl Acad Sci U S A. 2021 Sep 7;118(36). doi: 10.1073/pnas.2106195118.
5
Conformational energy penalties of protein-bound ligands.
J Comput Aided Mol Des. 1998 Jul;12(4):383-96. doi: 10.1023/a:1008007507641.
6
Exploring ligand dynamics in protein crystal structures with ensemble refinement.
Acta Crystallogr D Struct Biol. 2021 Aug 1;77(Pt 8):1099-1115. doi: 10.1107/S2059798321006513. Epub 2021 Jul 29.
7
Improving ligand 3D shape similarity-based pose prediction with a continuum solvent model.
J Comput Aided Mol Des. 2019 Dec;33(12):1045-1055. doi: 10.1007/s10822-019-00220-0. Epub 2019 Aug 28.
8
Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
Acta Crystallogr D Struct Biol. 2016 Sep;72(Pt 9):1062-72. doi: 10.1107/S2059798316012225. Epub 2016 Aug 31.
9
Conformational variability of benzamidinium-based inhibitors.
J Am Chem Soc. 2009 Jun 10;131(22):7742-54. doi: 10.1021/ja9010833.
10
Protein conformational flexibility modulates kinetics and thermodynamics of drug binding.
Nat Commun. 2017 Dec 22;8(1):2276. doi: 10.1038/s41467-017-02258-w.

引用本文的文献

2
Virtual screening: hope, hype, and the fine line in between.
Expert Opin Drug Discov. 2025 Feb;20(2):145-162. doi: 10.1080/17460441.2025.2458666. Epub 2025 Jan 27.
3
Applying atomistic neural networks to bias conformer ensembles towards bioactive-like conformations.
J Cheminform. 2023 Dec 21;15(1):124. doi: 10.1186/s13321-023-00794-w.
4
Study of SQ109 analogs binding to mycobacterium MmpL3 transporter using MD simulations and alchemical relative binding free energy calculations.
J Comput Aided Mol Des. 2023 Jun;37(5-6):245-264. doi: 10.1007/s10822-023-00504-6. Epub 2023 May 2.
5
Rhenium(V) Complexes as Cysteine-Targeting Coordinate Covalent Warheads.
J Med Chem. 2023 Feb 23;66(4):3088-3105. doi: 10.1021/acs.jmedchem.2c02074. Epub 2023 Feb 8.
6
An Efficient Approach to Large-Scale Ab Initio Conformational Energy Profiles of Small Molecules.
Molecules. 2022 Dec 5;27(23):8567. doi: 10.3390/molecules27238567.
7
Collaborative Assessment of Molecular Geometries and Energies from the Open Force Field.
J Chem Inf Model. 2022 Dec 12;62(23):6094-6104. doi: 10.1021/acs.jcim.2c01185. Epub 2022 Nov 26.
8
Computational design of a sensitive, selective phase-changing sensor protein for the VX nerve agent.
Sci Adv. 2022 Jul 8;8(27):eabh3421. doi: 10.1126/sciadv.abh3421. Epub 2022 Jul 6.
9
Increased Molecular Flexibility Widens the Gap between and values in Screening for Retinoid X Receptor Modulators.
ACS Med Chem Lett. 2022 Jan 21;13(2):211-217. doi: 10.1021/acsmedchemlett.1c00575. eCollection 2022 Feb 10.
10
Ligand Strain Energy in Large Library Docking.
J Chem Inf Model. 2021 Sep 27;61(9):4331-4341. doi: 10.1021/acs.jcim.1c00368. Epub 2021 Sep 1.

本文引用的文献

1
Improved ligand geometries in crystallographic refinement using AFITT in PHENIX.
Acta Crystallogr D Struct Biol. 2016 Sep;72(Pt 9):1062-72. doi: 10.1107/S2059798316012225. Epub 2016 Aug 31.
2
Towards understanding the unbound state of drug compounds: Implications for the intramolecular reorganization energy upon binding.
Bioorg Med Chem. 2016 May 15;24(10):2159-89. doi: 10.1016/j.bmc.2016.03.022. Epub 2016 Mar 14.
3
Outcome of the First wwPDB/CCDC/D3R Ligand Validation Workshop.
Structure. 2016 Apr 5;24(4):502-508. doi: 10.1016/j.str.2016.02.017.
4
The Nature of Activated Non-classical Hydrogen Bonds: A Case Study on Acetylcholinesterase-Ligand Complexes.
Chemistry. 2016 Feb 18;22(8):2672-81. doi: 10.1002/chem.201503973. Epub 2016 Jan 11.
5
A Multilevel Strategy for the Exploration of the Conformational Flexibility of Small Molecules.
J Chem Theory Comput. 2012 May 8;8(5):1808-19. doi: 10.1021/ct300097s. Epub 2012 Apr 10.
6
BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1045-53. doi: 10.1093/nar/gkv1072. Epub 2015 Oct 19.
7
Toward Focusing Conformational Ensembles on Bioactive Conformations: A Molecular Mechanics/Quantum Mechanics Study.
J Chem Inf Model. 2015 Oct 26;55(10):2154-67. doi: 10.1021/acs.jcim.5b00259. Epub 2015 Oct 8.
8
New insights into the enzymatic mechanism of human chitotriosidase (CHIT1) catalytic domain by atomic resolution X-ray diffraction and hybrid QM/MM.
Acta Crystallogr D Biol Crystallogr. 2015 Jul;71(Pt 7):1455-70. doi: 10.1107/S139900471500783X. Epub 2015 Jun 30.
9
Heats of formation of platonic hydrocarbon cages by means of high-level thermochemical procedures.
J Comput Chem. 2016 Jan 5;37(1):49-58. doi: 10.1002/jcc.23963. Epub 2015 Jun 12.
10
Characteristics of a σ-Hole and the Nature of a Halogen Bond.
Top Curr Chem. 2015;359:1-25. doi: 10.1007/128_2014_606.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验