Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.
Center for Plant Science Innovation, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
Plant Biotechnol J. 2018 Apr;16(4):926-938. doi: 10.1111/pbi.12839. Epub 2018 Jan 18.
Modified fatty acids (mFA) have diverse uses; for example, cyclopropane fatty acids (CPA) are feedstocks for producing coatings, lubricants, plastics and cosmetics. The expression of mFA-producing enzymes in crop and model plants generally results in lower levels of mFA accumulation than in their natural-occurring source plants. Thus, to further our understanding of metabolic bottlenecks that limit mFA accumulation, we generated transgenic Camelina sativa lines co-expressing Escherichia coli cyclopropane synthase (EcCPS) and Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT). In contrast to transgenic CPA-accumulating Arabidopsis, CPA accumulation in camelina caused only minor changes in seed weight, germination rate, oil accumulation and seedling development. CPA accumulated to much higher levels in membrane than storage lipids, comprising more than 60% of total fatty acid in both phosphatidylcholine (PC) and phosphatidylethanolamine (PE) versus 26% in diacylglycerol (DAG) and 12% in triacylglycerol (TAG) indicating bottlenecks in the transfer of CPA from PC to DAG and from DAG to TAG. Upon co-expression of SfLPAT with EcCPS, di-CPA-PC increased by ~50% relative to lines expressing EcCPS alone with the di-CPA-PC primarily observed in the embryonic axis and mono-CPA-PC primarily in cotyledon tissue. EcCPS-SfLPAT lines revealed a redistribution of CPA from the sn-1 to sn-2 positions within PC and PE that was associated with a doubling of CPA accumulation in both DAG and TAG. The identification of metabolic bottlenecks in acyl transfer between site of synthesis (phospholipids) and deposition in storage oils (TAGs) lays the foundation for the optimizing CPA accumulation through directed engineering of oil synthesis in target crops.
改性脂肪酸 (mFA) 具有多种用途;例如,环丙烷脂肪酸 (CPA) 是生产涂料、润滑剂、塑料和化妆品的原料。在作物和模式植物中表达 mFA 产生酶通常会导致 mFA 积累水平低于其天然存在的源植物。因此,为了进一步了解限制 mFA 积累的代谢瓶颈,我们生成了共表达大肠杆菌环丙烷合酶 (EcCPS) 和乌桕溶血磷脂酸酰基转移酶 (SfLPAT) 的转基因荠蓝 (Camelina sativa) 系。与转基因 CPA 积累的拟南芥相比,CPA 在荠蓝中的积累仅导致种子重量、发芽率、油脂积累和幼苗发育的微小变化。CPA 在膜中积累的水平远高于储存脂质,在磷脂酰胆碱 (PC) 和磷脂酰乙醇胺 (PE) 中占总脂肪酸的 60%以上,而在二酰甘油 (DAG) 中占 26%,在三酰甘油 (TAG) 中占 12%,表明 CPA 从 PC 向 DAG 和从 DAG 向 TAG 的转移存在瓶颈。与单独表达 EcCPS 的系相比,当与 SfLPAT 共表达时,二-CPA-PC 相对增加了约 50%,并且二-CPA-PC 主要观察到在胚胎轴中,而单-CPA-PC 主要观察到在子叶组织中。EcCPS-SfLPAT 系显示出 CPA 在 PC 和 PE 中从 sn-1 位到 sn-2 位的位置重新分布,这与 DAG 和 TAG 中 CPA 积累量增加一倍有关。在合成部位 (磷脂) 和储存油 (TAG) 中酰基转移之间确定代谢瓶颈为通过在目标作物中定向工程化油脂合成来优化 CPA 积累奠定了基础。