Suppr超能文献

用于环形阵列内燃机去耦的新型谐振器几何结构。

New resonator geometries for ICE decoupling of loop arrays.

作者信息

Yan Xinqiang, Gore John C, Grissom William A

机构信息

Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA.

Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.

出版信息

J Magn Reson. 2017 Apr;277:59-67. doi: 10.1016/j.jmr.2017.02.011. Epub 2017 Feb 16.

Abstract

RF arrays with a large number of independent coil elements are advantageous for parallel transmission (pTx) and reception at high fields. One of the main challenges in designing RF arrays is to minimize the electromagnetic (EM) coupling between the coil elements. The induced current elimination (ICE) method, which uses additional resonator elements to cancel coils' mutual EM coupling, has proven to be a simple and efficient solution for decoupling microstrip, L/C loop, monopole and dipole arrays. However, in previous embodiments of conventional ICE decoupling, the decoupling elements acted as "magnetic-walls" with low transmit fields and consequently low MR signal near them. To solve this problem, new resonator geometries including overlapped and perpendicular decoupling loops are proposed. The new geometries were analyzed theoretically and validated in EM simulations, bench tests and MR experiments. The isolation between two closely-placed loops could be improved from about -5dB to <-45dB by using the new geometries.

摘要

具有大量独立线圈元件的射频阵列有利于在高场下进行并行发射(pTx)和接收。设计射频阵列的主要挑战之一是最小化线圈元件之间的电磁(EM)耦合。感应电流消除(ICE)方法利用额外的谐振器元件来消除线圈之间的相互电磁耦合,已被证明是一种用于解耦微带、L/C 回路、单极和偶极阵列的简单有效解决方案。然而,在传统 ICE 解耦的先前实施例中,解耦元件充当“磁壁”,其发射场较低,因此附近的磁共振信号也较低。为了解决这个问题,提出了包括重叠和解耦垂直回路在内的新谐振器几何结构。对新几何结构进行了理论分析,并在电磁模拟、台架测试和磁共振实验中得到验证。通过使用新几何结构,两个紧密放置的回路之间的隔离度可从约 -5dB 提高到 <-45dB。

相似文献

1
New resonator geometries for ICE decoupling of loop arrays.
J Magn Reson. 2017 Apr;277:59-67. doi: 10.1016/j.jmr.2017.02.011. Epub 2017 Feb 16.
2
Magnetic wall decoupling method for monopole coil array in ultrahigh field MRI: a feasibility test.
Quant Imaging Med Surg. 2014 Apr;4(2):79-86. doi: 10.3978/j.issn.2223-4292.2014.04.10.
3
7T transmit/receive arrays using ICE decoupling for human head MR imaging.
IEEE Trans Med Imaging. 2014 Sep;33(9):1781-7. doi: 10.1109/TMI.2014.2313879. Epub 2014 Apr 1.
4
ICE decoupling technique for RF coil array designs.
Med Phys. 2011 Jul;38(7):4086-93. doi: 10.1118/1.3598112.
5
Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.
Appl Magn Reson. 2015 Jan;46(1):59-66. doi: 10.1007/s00723-014-0612-9. Epub 2014 Nov 27.
6
Optimizing the ICE decoupling element distance to improve monopole antenna arrays for 7 Tesla MRI.
Magn Reson Imaging. 2016 Nov;34(9):1264-1268. doi: 10.1016/j.mri.2016.07.008. Epub 2016 Jul 25.
7
Novel inductive decoupling technique for flexible transceiver arrays of monolithic transmission line resonators.
Magn Reson Med. 2015 Apr;73(4):1669-81. doi: 10.1002/mrm.25260. Epub 2014 Apr 17.
9
Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.
IEEE Trans Med Imaging. 2015 Apr;34(4):836-45. doi: 10.1109/TMI.2014.2370533. Epub 2014 Nov 13.
10
Closely-spaced double-row microstrip RF arrays for parallel MR imaging at ultrahigh fields.
Appl Magn Reson. 2015 Nov;46(11):1239-1248. doi: 10.1007/s00723-015-0712-1. Epub 2015 Jun 30.

引用本文的文献

2
Reproducible and highly miniaturized bazooka RF Balun using a printed capacitor.
Magn Reson Med. 2025 Jan;93(1):422-432. doi: 10.1002/mrm.30268. Epub 2024 Aug 27.
3
High-Density MRI RF Arrays Using Mixed Dipole Antennas and Microstrip Transmission Line Resonators.
IEEE Trans Biomed Eng. 2022 Oct;69(10):3243-3252. doi: 10.1109/TBME.2022.3166279. Epub 2022 Sep 19.
4
Over-overlapped loop arrays: A numerical study.
Magn Reson Imaging. 2020 Oct;72:135-142. doi: 10.1016/j.mri.2020.07.006. Epub 2020 Jul 18.
5
Optimization of a transmit/receive surface coil for squirrel monkey spinal cord imaging.
Magn Reson Imaging. 2020 May;68:197-202. doi: 10.1016/j.mri.2020.02.011. Epub 2020 Feb 19.
7
Modular transmit/receive arrays using very-high permittivity dielectric resonator antennas.
Magn Reson Med. 2018 Mar;79(3):1781-1788. doi: 10.1002/mrm.26784. Epub 2017 Jun 20.

本文引用的文献

1
Design and Test of Magnetic Wall Decoupling for Dipole Transmit/Receive Array for MR Imaging at the Ultrahigh Field of 7T.
Appl Magn Reson. 2015 Jan;46(1):59-66. doi: 10.1007/s00723-014-0612-9. Epub 2014 Nov 27.
2
Optimizing the ICE decoupling element distance to improve monopole antenna arrays for 7 Tesla MRI.
Magn Reson Imaging. 2016 Nov;34(9):1264-1268. doi: 10.1016/j.mri.2016.07.008. Epub 2016 Jul 25.
3
Experimental implementation of array-compressed parallel transmission at 7 tesla.
Magn Reson Med. 2016 Jun;75(6):2545-52. doi: 10.1002/mrm.26239. Epub 2016 Apr 15.
4
Simulation verification of SNR and parallel imaging improvements by ICE-decoupled loop array in MRI.
Appl Magn Reson. 2016 Apr;47(4):395-403. doi: 10.1007/s00723-016-0764-x. Epub 2016 Feb 29.
6
Design of a parallel transmit head coil at 7T with magnetic wall distributed filters.
IEEE Trans Med Imaging. 2015 Apr;34(4):836-45. doi: 10.1109/TMI.2014.2370533. Epub 2014 Nov 13.
7
Design of an Electrically Automated RF Transceiver Head Coil in MRI.
IEEE Trans Biomed Circuits Syst. 2015 Oct;9(5):725-32. doi: 10.1109/TBCAS.2014.2360383. Epub 2014 Oct 28.
9
7T transmit/receive arrays using ICE decoupling for human head MR imaging.
IEEE Trans Med Imaging. 2014 Sep;33(9):1781-7. doi: 10.1109/TMI.2014.2313879. Epub 2014 Apr 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验