GDDP, Group for Digital Design and Processing, University of Valencia - ETSE - Electronic Eng. Dpt., Av. Universitat, s/n, 46100, Burjassot, Valencia, Spain.
GDDP, Group for Digital Design and Processing, University of Valencia - ETSE - Electronic Eng. Dpt., Av. Universitat, s/n, 46100, Burjassot, Valencia, Spain.
Comput Methods Programs Biomed. 2017 Apr;141:119-127. doi: 10.1016/j.cmpb.2017.02.010. Epub 2017 Feb 10.
To safely select the proper therapy for Ventricullar Fibrillation (VF) is essential to distinct it correctly from Ventricular Tachycardia (VT) and other rhythms. Provided that the required therapy would not be the same, an erroneous detection might lead to serious injuries to the patient or even cause Ventricular Fibrillation (VF). The main novelty of this paper is the use of time-frequency (t-f) representation images as the direct input to the classifier. We hypothesize that this method allow to improve classification results as it allows to eliminate the typical feature selection and extraction stage, and its corresponding loss of information.
The standard AHA and MIT-BIH databases were used for evaluation and comparison with other authors. Previous to t-f Pseudo Wigner-Ville (PWV) calculation, only a basic preprocessing for denoising and signal alignment is necessary. In order to check the validity of the method independently of the classifier, four different classifiers are used: Logistic Regression with L2 Regularization (L2 RLR), Adaptive Neural Network Classifier (ANNC), Support Vector Machine (SSVM), and Bagging classifier (BAGG).
The main classification results for VF detection (including flutter episodes) are 95.56% sensitivity and 98.8% specificity, 88.80% sensitivity and 99.5% specificity for ventricular tachycardia (VT), 98.98% sensitivity and 97.7% specificity for normal sinus, and 96.87% sensitivity and 99.55% specificity for other rhythms.
Results shows that using t-f data representations to feed classifiers provide superior performance values than the feature selection strategies used in previous works. It opens the door to be used in any other detection applications.
正确区分心室颤动(VF)与室性心动过速(VT)和其他节律对于安全选择适当的治疗方法至关重要。如果所需的治疗方法不同,错误的检测可能会对患者造成严重伤害,甚至导致心室颤动(VF)。本文的主要新颖之处在于使用时频(t-f)表示图像作为分类器的直接输入。我们假设这种方法可以提高分类结果,因为它可以消除典型的特征选择和提取阶段及其相应的信息丢失。
使用标准的 AHA 和 MIT-BIH 数据库进行评估,并与其他作者进行比较。在进行 t-f 伪魏格纳-维尔(PWV)计算之前,仅需要进行基本的去噪和信号对齐预处理。为了独立于分类器检查方法的有效性,使用了四种不同的分类器:具有 L2 正则化的逻辑回归(L2 RLR)、自适应神经网络分类器(ANNC)、支持向量机(SSVM)和袋装分类器(BAGG)。
VF 检测(包括扑动发作)的主要分类结果为 95.56%的灵敏度和 98.8%的特异性、88.80%的灵敏度和 99.5%的特异性用于室性心动过速(VT)、98.98%的灵敏度和 97.7%的特异性用于正常窦性节律,以及 96.87%的灵敏度和 99.55%的特异性用于其他节律。
结果表明,使用 t-f 数据表示形式为分类器提供了比先前工作中使用的特征选择策略更高的性能值。它为在任何其他检测应用中使用开辟了道路。