IEEE Trans Biomed Eng. 2014 Mar;61(3):832-40. doi: 10.1109/TBME.2013.2290800. Epub 2013 Nov 13.
Early detection of ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) is crucial for the success of the defibrillation therapy. A wide variety of detection algorithms have been proposed based on temporal, spectral, or complexity parameters extracted from the ECG. However, these algorithms are mostly constructed by considering each parameter individually. In this study, we present a novel life-threatening arrhythmias detection algorithm that combines a number of previously proposed ECG parameters by using support vector machines classifiers. A total of 13 parameters were computed accounting for temporal (morphological), spectral, and complexity features of the ECG signal. A filter-type feature selection (FS) procedure was proposed to analyze the relevance of the computed parameters and how they affect the detection performance. The proposed methodology was evaluated in two different binary detection scenarios: shockable (FV plus VT) versus nonshockable arrhythmias, and VF versus nonVF rhythms, using the information contained in the medical imaging technology database, the Creighton University ventricular tachycardia database, and the ventricular arrhythmia database. sensitivity (SE) and specificity (SP) analysis on the out of sample test data showed values of SE=95%, SP=99%, and SE=92% , SP=97% in the case of shockable and VF scenarios, respectively. Our algorithm was benchmarked against individual detection schemes, significantly improving their performance. Our results demonstrate that the combination of ECG parameters using statistical learning algorithms improves the efficiency for the detection of life-threatening arrhythmias.
早期检测心室颤动(VF)和快速性室性心动过速(VT)对于除颤治疗的成功至关重要。已经提出了各种各样的检测算法,这些算法基于从心电图中提取的时间、频谱或复杂度参数。然而,这些算法大多是通过单独考虑每个参数来构建的。在这项研究中,我们提出了一种新颖的致命性心律失常检测算法,该算法通过使用支持向量机分类器组合了许多以前提出的心电图参数。总共计算了 13 个参数,这些参数考虑了心电图信号的时间(形态学)、频谱和复杂度特征。提出了一种滤波器式特征选择(FS)程序来分析计算参数的相关性以及它们如何影响检测性能。该方法在两种不同的二进制检测场景中进行了评估:可电击(FV 加 VT)与不可电击心律失常,以及 VF 与非 VF 节律,使用医疗成像技术数据库、Creighton 大学室性心动过速数据库和心室性心律失常数据库中包含的信息。在对样本外测试数据进行敏感性(SE)和特异性(SP)分析时,在可电击和 VF 场景下,SE 分别为 95%、SP 为 99%和 SE 为 92%、SP 为 97%。我们的算法与单个检测方案进行了基准测试,显著提高了它们的性能。我们的结果表明,使用统计学习算法组合心电图参数可以提高检测致命性心律失常的效率。