Kwon Jea, An Heeyoung, Sa Moonsun, Won Joungha, Shin Jeong Im, Lee C Justin
KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea.; Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
Center for Neuroscience and Functional Connectomics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Center for Glia-Neuron Interaction, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.; Department of Biological Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
Exp Neurobiol. 2017 Feb;26(1):42-54. doi: 10.5607/en.2017.26.1.42. Epub 2017 Feb 9.
Astrocytes are non-excitable cells in the brain and their activity largely depends on the intracellular calcium (Ca) level. Therefore, maintaining the intracellular Ca homeostasis is critical for proper functioning of astrocytes. One of the key regulatory mechanisms of Ca homeostasis in astrocytes is the store-operated Ca entry (SOCE). This process is mediated by a combination of the Ca-store-depletion-sensor, Stim, and the store-operated Ca-channels, Orai and TrpC families. Despite the existence of all those families in astrocytes, previous studies have provided conflicting results on the molecular identification of astrocytic SOCE. Here, using the shRNA-based gene-silencing approach and Ca-imaging from cultured mouse astrocytes, we report that Stim1 in combination with Orai1 and Orai3 contribute to the major portion of astrocytic SOCE. Gene-silencing of Stim1 showed a 79.2% reduction of SOCE, indicating that Stim1 is the major Ca-store-depletion-sensor. Further gene-silencing showed that Orai1, Orai2, Orai3, and TrpC1 contribute to SOCE by 35.7%, 20.3%, 26.8% and 12.2%, respectively. Simultaneous gene-silencing of all three Orai subtypes exhibited a 67.6% reduction of SOCE. Based on the detailed population analysis, we predict that Orai1 and Orai3 are expressed in astrocytes with a large SOCE, whereas TrpC1 is exclusively expressed in astrocytes with a small SOCE. This analytical approach allows us to identify the store operated channel (SOC) subtype in each cell by the degree of SOCE. Our results propose that Stim1 in combination with Orai1 and Orai3 are the major molecular components of astrocytic SOCE under various physiological and pathological conditions.
星形胶质细胞是大脑中的非兴奋性细胞,其活性很大程度上取决于细胞内钙(Ca)水平。因此,维持细胞内钙稳态对于星形胶质细胞的正常功能至关重要。星形胶质细胞中钙稳态的关键调节机制之一是储存-操纵性钙内流(SOCE)。这个过程由钙储存耗竭传感器Stim以及储存-操纵性钙通道(Orai和TrpC家族)共同介导。尽管星形胶质细胞中存在所有这些家族,但先前的研究在星形胶质细胞SOCE的分子鉴定上给出了相互矛盾的结果。在这里,我们使用基于短发夹RNA(shRNA)的基因沉默方法以及对培养的小鼠星形胶质细胞进行钙成像,报告称Stim1与Orai1和Orai3共同构成了星形胶质细胞SOCE的主要部分。Stim1的基因沉默使SOCE降低了79.2%,表明Stim1是主要的钙储存耗竭传感器。进一步的基因沉默表明,Orai1、Orai2、Orai3和TrpC1对SOCE的贡献分别为35.7%、20.3%、26.8%和12.2%。同时对所有三种Orai亚型进行基因沉默使SOCE降低了67.6%。基于详细的群体分析,我们预测Orai1和Orai3在具有大量SOCE的星形胶质细胞中表达,而TrpC1仅在具有少量SOCE的星形胶质细胞中表达。这种分析方法使我们能够根据SOCE的程度识别每个细胞中的储存操纵通道(SOC)亚型。我们的结果表明,在各种生理和病理条件下,Stim1与Orai1和Orai3共同构成了星形胶质细胞SOCE的主要分子成分。