Suppr超能文献

甜樱桃(欧洲甜樱桃)果实发育过程中的抗坏血酸代谢

Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development.

作者信息

Liang Dong, Zhu Tingting, Ni Zhiyou, Lin Lijin, Tang Yi, Wang Zhihui, Wang Xun, Wang Jin, Lv Xiulan, Xia Hui

机构信息

Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China.

出版信息

PLoS One. 2017 Feb 28;12(2):e0172818. doi: 10.1371/journal.pone.0172818. eCollection 2017.

Abstract

To elucidate metabolism of ascorbic acid (AsA) in sweet cherry fruit (Prunus avium 'Hongdeng'), we quantified AsA concentration, cloned sequences involved in AsA metabolism and investigated their mRNA expression levels, and determined the activity levels of selected enzymes during fruit development and maturation. We found that AsA concentration was highest at the petal-fall period (0 days after anthesis) and decreased progressively during ripening, but with a slight increase at maturity. AsA did nevertheless continue to accumulate over time because of the increase in fruit fresh weight. Full-length cDNAs of 10 genes involved in the L-galactose pathway of AsA biosynthesis and 10 involved in recycling were obtained. Gene expression patterns of GDP-L-galactose phosphorylase (GGP2), L-galactono-1, 4-lactone dehydrogenase (GalLDH), ascorbate peroxidase (APX3), ascorbate oxidase (AO2), glutathione reductase (GR1), and dehydroascorbate reductase (DHAR1) were in accordance with the AsA concentration pattern during fruit development, indicating that genes involved in ascorbic acid biosynthesis, degradation, and recycling worked in concert to regulate ascorbic acid accumulation in sweet cherry fruit.

摘要

为阐明甜樱桃(Prunus avium 'Hongdeng')果实中抗坏血酸(AsA)的代谢情况,我们对AsA浓度进行了定量分析,克隆了参与AsA代谢的序列并研究了它们的mRNA表达水平,还测定了果实发育和成熟过程中所选酶的活性水平。我们发现,AsA浓度在落花期(开花后0天)最高,在成熟过程中逐渐降低,但在成熟时略有增加。不过,由于果实鲜重增加,AsA仍随时间持续积累。获得了10个参与AsA生物合成L-半乳糖途径的基因和10个参与循环利用的基因的全长cDNA。GDP-L-半乳糖磷酸化酶(GGP2)、L-半乳糖-1,4-内酯脱氢酶(GalLDH)、抗坏血酸过氧化物酶(APX3)、抗坏血酸氧化酶(AO2)、谷胱甘肽还原酶(GR1)和脱氢抗坏血酸还原酶(DHAR1)的基因表达模式与果实发育过程中的AsA浓度模式一致,表明参与抗坏血酸生物合成、降解和循环利用的基因协同作用,调节甜樱桃果实中抗坏血酸的积累。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4647/5330498/dd9079a08439/pone.0172818.g001.jpg

相似文献

1
Ascorbic acid metabolism during sweet cherry (Prunus avium) fruit development.
PLoS One. 2017 Feb 28;12(2):e0172818. doi: 10.1371/journal.pone.0172818. eCollection 2017.
2
Comparison of ascorbic acid biosynthesis in different tissues of three non-heading Chinese cabbage cultivars.
Plant Physiol Biochem. 2013 Dec;73:229-36. doi: 10.1016/j.plaphy.2013.10.005. Epub 2013 Oct 10.
3
L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt).
J Plant Physiol. 2014 Sep 1;171(14):1205-16. doi: 10.1016/j.jplph.2014.03.010. Epub 2014 Apr 15.
4
L-Ascorbate biosynthesis in peach: cloning of six L-galactose pathway-related genes and their expression during peach fruit development.
Physiol Plant. 2009 Jun;136(2):139-49. doi: 10.1111/j.1399-3054.2009.01213.x. Epub 2009 Feb 12.
6
Comparison of ascorbate metabolism in fruits of two citrus species with obvious difference in ascorbate content in pulp.
J Plant Physiol. 2011 Dec 15;168(18):2196-205. doi: 10.1016/j.jplph.2011.07.015. Epub 2011 Sep 17.
7
Low temperature storage affects the ascorbic acid metabolism of cherry tomato fruits.
Plant Physiol Biochem. 2014 Nov;84:149-157. doi: 10.1016/j.plaphy.2014.09.009. Epub 2014 Sep 23.
8
Ascorbate biosynthesis during early fruit development is the main reason for its accumulation in kiwi.
PLoS One. 2010 Dec 9;5(12):e14281. doi: 10.1371/journal.pone.0014281.
10
PacCOP1 negatively regulates anthocyanin biosynthesis in sweet cherry (Prunus avium L.).
J Photochem Photobiol B. 2020 Jan;203:111779. doi: 10.1016/j.jphotobiol.2020.111779. Epub 2020 Jan 7.

引用本文的文献

1
L-gulono-γ-lactone Oxidase, the Key Enzyme for L-Ascorbic Acid Biosynthesis.
Curr Issues Mol Biol. 2024 Oct 1;46(10):11057-11074. doi: 10.3390/cimb46100657.
2
Effect of light on ascorbic acid biosynthesis and bioinformatics analysis of related genes in Chinese chives.
PLoS One. 2024 Aug 22;19(8):e0307527. doi: 10.1371/journal.pone.0307527. eCollection 2024.
4
5
Genetic and biochemical strategies for regulation of L-ascorbic acid biosynthesis in plants through the L-galactose pathway.
Front Plant Sci. 2023 Mar 15;14:1099829. doi: 10.3389/fpls.2023.1099829. eCollection 2023.
6
Benzothiadiazole enhances ascorbate recycling and polyphenols accumulation in blueberry in a cultivar-dependent manner.
Front Plant Sci. 2022 Dec 9;13:1032133. doi: 10.3389/fpls.2022.1032133. eCollection 2022.
7
Effects of ozone treatment on the antioxidant capacity of postharvest strawberry.
RSC Adv. 2020 Oct 15;10(63):38142-38157. doi: 10.1039/d0ra06448c.
8
Identification and verification of key taste components in wampee using widely targeted metabolomics.
Food Chem X. 2022 Feb 24;13:100261. doi: 10.1016/j.fochx.2022.100261. eCollection 2022 Mar 30.
10
Biochemical characteristics of urban maple trees.
Saudi J Biol Sci. 2020 Nov;27(11):2912-2916. doi: 10.1016/j.sjbs.2020.09.010. Epub 2020 Sep 12.

本文引用的文献

2
Transcriptomic Analysis Reveals the Metabolic Mechanism of L-Ascorbic Acid in Ziziphus jujuba Mill.
Front Plant Sci. 2016 Feb 15;7:122. doi: 10.3389/fpls.2016.00122. eCollection 2016.
4
L-Ascorbic acid metabolism during fruit development in an ascorbate-rich fruit crop chestnut rose (Rosa roxburghii Tratt).
J Plant Physiol. 2014 Sep 1;171(14):1205-16. doi: 10.1016/j.jplph.2014.03.010. Epub 2014 Apr 15.
5
L-ascorbic Acid: a multifunctional molecule supporting plant growth and development.
Scientifica (Cairo). 2013;2013:795964. doi: 10.1155/2013/795964. Epub 2013 Jan 17.
6
7
Ascorbic acid metabolism during bilberry (Vaccinium myrtillus L.) fruit development.
J Plant Physiol. 2012 Jul 15;169(11):1059-65. doi: 10.1016/j.jplph.2012.03.010. Epub 2012 May 17.
8
Enhancing ascorbate in fruits and tubers through over-expression of the L-galactose pathway gene GDP-L-galactose phosphorylase.
Plant Biotechnol J. 2012 May;10(4):390-7. doi: 10.1111/j.1467-7652.2011.00668.x. Epub 2011 Dec 1.
9
Delayed senescence of apple leaves by exogenous melatonin treatment: toward regulating the ascorbate-glutathione cycle.
J Pineal Res. 2012 Aug;53(1):11-20. doi: 10.1111/j.1600-079X.2011.00966.x. Epub 2011 Oct 12.
10
Regulation of L-ascorbic acid content in strawberry fruits.
J Exp Bot. 2011 Aug;62(12):4191-201. doi: 10.1093/jxb/err122. Epub 2011 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验