Suppr超能文献

从非增强心脏CT扫描中自动分割和量化心脏结构。

Automatic segmentation and quantification of the cardiac structures from non-contrast-enhanced cardiac CT scans.

作者信息

Shahzad Rahil, Bos Daniel, Budde Ricardo P J, Pellikaan Karlijn, Niessen Wiro J, van der Lugt Aad, van Walsum Theo

机构信息

Division of Image Processing, Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, Netherlands. Biomedical Imaging Group Rotterdam, Departments of Radiology & Nuclear Medicine and Medical Informatics, Erasmus MC-University Medical Center, 3015 GE Rotterdam, Netherlands.

出版信息

Phys Med Biol. 2017 May 7;62(9):3798-3813. doi: 10.1088/1361-6560/aa63cb. Epub 2017 Mar 1.

Abstract

Early structural changes to the heart, including the chambers and the coronary arteries, provide important information on pre-clinical heart disease like cardiac failure. Currently, contrast-enhanced cardiac computed tomography angiography (CCTA) is the preferred modality for the visualization of the cardiac chambers and the coronaries. In clinical practice not every patient undergoes a CCTA scan; many patients receive only a non-contrast-enhanced calcium scoring CT scan (CTCS), which has less radiation dose and does not require the administration of contrast agent. Quantifying cardiac structures in such images is challenging, as they lack the contrast present in CCTA scans. Such quantification would however be relevant, as it enables population based studies with only a CTCS scan. The purpose of this work is therefore to investigate the feasibility of automatic segmentation and quantification of cardiac structures viz whole heart, left atrium, left ventricle, right atrium, right ventricle and aortic root from CTCS scans. A fully automatic multi-atlas-based segmentation approach is used to segment the cardiac structures. Results show that the segmentation overlap between the automatic method and that of the reference standard have a Dice similarity coefficient of 0.91 on average for the cardiac chambers. The mean surface-to-surface distance error over all the cardiac structures is [Formula: see text] mm. The automatically obtained cardiac chamber volumes using the CTCS scans have an excellent correlation when compared to the volumes in corresponding CCTA scans, a Pearson correlation coefficient (R) of 0.95 is obtained. Our fully automatic method enables large-scale assessment of cardiac structures on non-contrast-enhanced CT scans.

摘要

心脏早期的结构变化,包括心腔和冠状动脉,可为诸如心力衰竭等临床前心脏病提供重要信息。目前,对比增强心脏计算机断层扫描血管造影(CCTA)是可视化心腔和冠状动脉的首选方式。在临床实践中,并非每个患者都要进行CCTA扫描;许多患者仅接受非对比增强钙评分CT扫描(CTCS),该扫描辐射剂量较小且无需注射造影剂。在这类图像中对心脏结构进行量化具有挑战性,因为它们缺乏CCTA扫描中存在的对比度。然而,这种量化是有意义的,因为它能够仅通过CTCS扫描开展基于人群的研究。因此,这项工作的目的是研究从CTCS扫描中自动分割和量化心脏结构(即全心脏、左心房、左心室、右心房、右心室和主动脉根部)的可行性。采用基于多图谱的全自动分割方法来分割心脏结构。结果表明,自动方法与参考标准之间的分割重叠情况,心腔的平均骰子相似系数为0.91。所有心脏结构的平均表面到表面距离误差为[公式:见原文]毫米。与相应CCTA扫描中的体积相比,使用CTCS扫描自动获得的心脏腔室体积具有极佳的相关性,皮尔逊相关系数(R)为0.95。我们的全自动方法能够在非对比增强CT扫描上对心脏结构进行大规模评估。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验