Suppr超能文献

用于从64导联心电图中识别心房折返和异位灶起源的新型非侵入性算法:一项计算研究

Novel non-invasive algorithm to identify the origins of re-entry and ectopic foci in the atria from 64-lead ECGs: A computational study.

作者信息

Alday Erick A Perez, Colman Michael A, Langley Philip, Zhang Henggui

机构信息

Biological Physics Group, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.

Theoretical Physics Division, Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom.

出版信息

PLoS Comput Biol. 2017 Mar 2;13(3):e1005270. doi: 10.1371/journal.pcbi.1005270. eCollection 2017 Mar.

Abstract

Atrial tachy-arrhytmias, such as atrial fibrillation (AF), are characterised by irregular electrical activity in the atria, generally associated with erratic excitation underlain by re-entrant scroll waves, fibrillatory conduction of multiple wavelets or rapid focal activity. Epidemiological studies have shown an increase in AF prevalence in the developed world associated with an ageing society, highlighting the need for effective treatment options. Catheter ablation therapy, commonly used in the treatment of AF, requires spatial information on atrial electrical excitation. The standard 12-lead electrocardiogram (ECG) provides a method for non-invasive identification of the presence of arrhythmia, due to irregularity in the ECG signal associated with atrial activation compared to sinus rhythm, but has limitations in providing specific spatial information. There is therefore a pressing need to develop novel methods to identify and locate the origin of arrhythmic excitation. Invasive methods provide direct information on atrial activity, but may induce clinical complications. Non-invasive methods avoid such complications, but their development presents a greater challenge due to the non-direct nature of monitoring. Algorithms based on the ECG signals in multiple leads (e.g. a 64-lead vest) may provide a viable approach. In this study, we used a biophysically detailed model of the human atria and torso to investigate the correlation between the morphology of the ECG signals from a 64-lead vest and the location of the origin of rapid atrial excitation arising from rapid focal activity and/or re-entrant scroll waves. A focus-location algorithm was then constructed from this correlation. The algorithm had success rates of 93% and 76% for correctly identifying the origin of focal and re-entrant excitation with a spatial resolution of 40 mm, respectively. The general approach allows its application to any multi-lead ECG system. This represents a significant extension to our previously developed algorithms to predict the AF origins in association with focal activities.

摘要

房性快速心律失常,如心房颤动(AF),其特征是心房电活动不规则,通常与折返涡旋波、多个小波的颤动传导或快速局灶性活动所导致的不稳定兴奋有关。流行病学研究表明,在发达国家,随着社会老龄化,房颤患病率有所上升,这凸显了有效治疗方案的必要性。常用于治疗房颤的导管消融疗法需要心房电兴奋的空间信息。标准的12导联心电图(ECG)提供了一种非侵入性识别心律失常存在的方法,因为与窦性心律相比,与心房激活相关的ECG信号不规则,但在提供特定空间信息方面存在局限性。因此,迫切需要开发新的方法来识别和定位心律失常兴奋的起源。侵入性方法可提供有关心房活动的直接信息,但可能引发临床并发症。非侵入性方法可避免此类并发症,但其开发面临更大挑战,因为监测具有非直接性。基于多个导联(如64导联背心)的ECG信号的算法可能提供一种可行的方法。在本研究中,我们使用了一个人体心房和躯干的生物物理详细模型,来研究来自64导联背心的ECG信号形态与快速局灶性活动和/或折返涡旋波引起的快速心房兴奋起源位置之间的相关性。然后根据这种相关性构建了一个焦点定位算法。该算法在空间分辨率为40毫米的情况下,正确识别局灶性和折返性兴奋起源的成功率分别为93%和76%。该通用方法允许其应用于任何多导联ECG系统。这代表了对我们之前开发的与局灶性活动相关的预测房颤起源算法的重大扩展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0925/5333795/c3236347f6b9/pcbi.1005270.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验