Ward-Caviness Cavin K, Xu Tao, Aspelund Thor, Thorand Barbara, Montrone Corinna, Meisinger Christa, Dunger-Kaltenbach Irmtraud, Zierer Astrid, Yu Zhonghao, Helgadottir Inga R, Harris Tamara B, Launer Lenore J, Ganna Andrea, Lind Lars, Eiriksdottir Gudny, Waldenberger Melanie, Prehn Cornelia, Suhre Karsten, Illig Thomas, Adamski Jerzy, Ruepp Andreas, Koenig Wolfgang, Gudnason Vilmundur, Emilsson Valur, Wang-Sattler Rui, Peters Annette
Institute of Epidemiology II, Helmholtz Zentrum München, Neuherberg, Germany.
Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.
Heart. 2017 Aug;103(16):1278-1285. doi: 10.1136/heartjnl-2016-310789. Epub 2017 Mar 2.
The comprehensive assaying of low-molecular-weight compounds, for example, metabolomics, provides a unique tool to uncover novel biomarkers and understand pathways underlying myocardial infarction (MI). We used a targeted metabolomics approach to identify biomarkers for MI and evaluate their involvement in the pathogenesis of MI.
Using three independent, prospective cohorts (KORA S4, KORA S2 and AGES-REFINE), totalling 2257 participants without a history of MI at baseline, we identified metabolites associated with incident MI (266 cases). We also investigated the association between the metabolites and high-sensitivity C reactive protein (hsCRP) to understand the relation between these metabolites and systemic inflammation. Out of 140 metabolites, 16 were nominally associated (p<0.05) with incident MI in KORA S4. Three metabolites, arginine and two lysophosphatidylcholines (LPC 17:0 and LPC 18:2), were selected as biomarkers via a backward stepwise selection procedure in the KORA S4 and were significant (p<0.0003) in a meta-analysis comprising all three studies including KORA S2 and AGES-REFINE. Furthermore, these three metabolites increased the predictive value of the Framingham risk score, increasing the area under the receiver operating characteristic score in KORA S4 (from 0.70 to 0.78, p=0.001) and AGES-REFINE study (from 0.70 to 0.76, p=0.02), but was not observed in KORA S2. The metabolite biomarkers attenuated the association between hsCRP and MI, indicating a potential link to systemic inflammatory processes.
We identified three metabolite biomarkers, which in combination increase the predictive value of the Framingham risk score. The attenuation of the hsCRP-MI association by these three metabolites indicates a potential link to systemic inflammation.
对低分子量化合物进行全面分析,例如代谢组学,为发现新的生物标志物以及了解心肌梗死(MI)的潜在通路提供了独特的工具。我们采用靶向代谢组学方法来识别心肌梗死的生物标志物,并评估它们在心肌梗死发病机制中的作用。
我们使用了三个独立的前瞻性队列(KORA S4、KORA S2和AGES-REFINE),共有2257名在基线时无心肌梗死病史的参与者,我们识别出了与新发心肌梗死(266例)相关的代谢物。我们还研究了这些代谢物与高敏C反应蛋白(hsCRP)之间的关联,以了解这些代谢物与全身炎症之间的关系。在140种代谢物中,有16种在KORA S4中与新发心肌梗死存在名义上的关联(p<0.05)。通过KORA S4中的反向逐步选择程序,选择了三种代谢物,即精氨酸和两种溶血磷脂酰胆碱(LPC 17:0和LPC 18:2)作为生物标志物,并且在包括KORA S2和AGES-REFINE在内的所有三项研究的荟萃分析中具有显著性(p<0.0003)。此外,这三种代谢物提高了弗雷明汉风险评分的预测价值,增加了KORA S4研究中受试者工作特征曲线下面积(从0.70增加到0.78,p=0.001)以及AGES-REFINE研究中该面积(从0.70增加到0.76,p=0.02),但在KORA S2中未观察到这种情况。这些代谢物生物标志物减弱了hsCRP与心肌梗死之间 的关联,表明其与全身炎症过程存在潜在联系。
我们识别出了三种代谢物生物标志物,它们共同提高了弗雷明汉风险评分的预测价值。这三种代谢物对hsCRP与心肌梗死之间关联的减弱表明其与全身炎症存在潜在联系。