Suppr超能文献

代谢组学数据的多级药代动力学驱动建模

Multilevel pharmacokinetics-driven modeling of metabolomics data.

作者信息

Daghir-Wojtkowiak Emilia, Wiczling Paweł, Waszczuk-Jankowska Małgorzata, Kaliszan Roman, Markuszewski Michał Jan

机构信息

Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdańsk, Al. Gen. Hallera 107, 80-416 Gdańsk, Poland.

出版信息

Metabolomics. 2017;13(3):31. doi: 10.1007/s11306-017-1164-4. Epub 2017 Feb 8.

Abstract

INTRODUCTION

Multilevel modeling is a quantitative statistical method to investigate variability and relationships between variables of interest, taking into account population structure and dependencies. It can be used for prediction, data reduction and causal inference from experiments and observational studies allowing for more efficient elucidation of knowledge.

OBJECTIVES

In this study we introduced the concept of multilevel pharmacokinetics (PK)-driven modelling for large-sample, unbalanced and unadjusted metabolomics data comprising nucleoside and creatinine concentration measurements in urine of healthy and cancer patients.

METHODS

A Bayesian multilevel model was proposed to describe the nucleoside and creatinine concentration ratio considering age, sex and health status as covariates. The predictive performance of the proposed model was summarized via area under the ROC, sensitivity and specificity using external validation.

RESULTS

Cancer was associated with an increase in methylthioadenosine/creatinine excretion rate by a factor of 1.42 (1.09-2.03) which constituted the highest increase among all nucleosides. Age influenced nucleosides/creatinine excretion rates for all nucleosides in the same direction which was likely caused by a decrease in creatinine clearance with age. There was a small evidence of sex-related differences for methylthioadenosine. The individual prediction of patient classification as area under the ROC with 5th and 95th percentile was 0.57(0.5-0.67) with sensitivity and specificity of 0.59(0.42-0.76) and 0.57(0.45-0.7), respectively suggesting limited usefulness of 13 nucleosides/creatinine urine concentration measurements in predicting disease in this population.

CONCLUSION

Bayesian multilevel pharmacokinetics-driven modeling in metabolomics may be useful in understanding the data and may constitute a new tool for searching towards potential candidates of disease indicators.

摘要

引言

多水平建模是一种定量统计方法,用于研究感兴趣变量之间的变异性和关系,同时考虑总体结构和依赖性。它可用于预测、数据简化以及来自实验和观察性研究的因果推断,从而更有效地阐明知识。

目的

在本研究中,我们引入了多水平药代动力学(PK)驱动建模的概念,用于处理包含健康和癌症患者尿液中核苷和肌酐浓度测量值的大样本、不平衡且未经调整的代谢组学数据。

方法

提出了一种贝叶斯多水平模型,以年龄、性别和健康状况作为协变量来描述核苷与肌酐的浓度比。通过外部验证,利用ROC曲线下面积、敏感性和特异性总结了所提出模型的预测性能。

结果

癌症与甲硫腺苷/肌酐排泄率增加1.42倍(1.09 - 2.03)相关,这是所有核苷中增加幅度最大的。年龄对所有核苷的核苷/肌酐排泄率有相同方向的影响,这可能是由于肌酐清除率随年龄下降所致。甲硫腺苷存在少量与性别相关差异的证据。将患者分类为ROC曲线下面积处于第5和第95百分位数时的个体预测值为0.57(0.5 - 0.67),敏感性和特异性分别为0.59(0.42 - 0.76)和0.57(0.45 - 0.7),这表明在该人群中,13种核苷/肌酐尿液浓度测量值在预测疾病方面的实用性有限。

结论

代谢组学中基于贝叶斯多水平药代动力学的建模可能有助于理解数据,并且可能构成寻找疾病指标潜在候选物的新工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验